Restoration Flows Guidelines

Table of Contents

Purpose	.1
Paragraph 13(a) – Buffer Flows	3
Additional Settlement Text, Relevant to Buffer Flows	3
Recommendation for Release	5
Volume of Buffer Flows Available	5
Flexible Management of Buffer Flows	5
Provision for Moving Volumes from October through December	. 5
Provision for Moving Volumes from May through September	6
Example Availability and Flexibility of Buffer Flows	6
Paragraph 13(c) – Releases for Unexpected Seepage Losses	7
Acquisition Needs	.8
Procedures for Acquisition	.9
Release of Unexpected Seepage Water	.9
Accounting of Unexpected Seepage Water	10
Disposal of Unexpected Seepage Water	11
Paragraph 13(e) – Release Changes for Maintenance on Friant Division Facilities	
Paragraphs 13(f) and (h) – Coordination on Downstream Losses	15
Paragraph 13(i) – Unreleased Restoration Flows	17
Commencement of Restoration Flows	18
Determination of Unreleased Restoration Flows	18
Steps to Best Achieve the Restoration Goal	18
Priorities for Managing Unreleased Restoration Flows	19
Management of Unreleased Restoration Flows	19
Paragraph 13(j)(i) – Restoration Year Type and Flow Schedules	21
Technical Process for Setting the Year Type and Default Flow Schedule	21
Step 1: Determining Water Year Runoff	22
Step 2: Identifying Restoration Year Type and Calculating Annual Allocation for Restoration Flows	23

Paragraph 13(j)(vi) – Restoration Flows during Flood Releases	47
Transition Between Real-Time Management and Regular Schedules	46
Commitment of Resources	
Approval	
Factor 3 – Operational feasibility of real-time management	
Factor 2 – Duration has a Foreseeable End	
Circumstance	
Factor 1 – Identification of Extraordinary or Unforeseen	·····
Paragraph 13(j)(v) – Unforeseen, Extraordinary Circumstances	
Reach 5	44
Reach 4	44
Reach 3	43
Reach 2	42
Paragraph 13(j)(iv) – Methodology for Monitoring Seepage Losses	41
Transfers of RWA Balances	40
Paragraph 16(b) Deliveries	
Accounting for Reductions in Water Deliveries	
Recirculation, Replacement or Offset Programs and Projects	
Determining Reduction in Water Deliveries	
Paragraph 13(j)(iii) – Recovered Water Account	
Flow Compliance Evaluation	33
Development and Publication of the Monitoring and Analysis Plan	
Measurement, Monitoring, and Reporting of Daily Flow Rates	
Paragraph 13(j)(ii) – Measuring, Monitoring, and Reporting of Restoration Flows	
Management of Friant Dam Releases for Flow Targets	
Consistency of Restoration Administrator Recommendations with Settlement and Settlement Act	
Restoration Administrator Flow Schedule Recommendations	
Consultation with Federal Fisheries Agencies	
Transmissions to the Restoration Administrator from Reclamation	
Restoration Flows	
Coordination with the Restoration Administrator on the Release of	
Step 3: Setting the Default Flow Schedule	25

Revision Process	
References	

Tables

Table 1. Volumes of Buffer Flows Available	5
Table 2. Forecast Use Option 1D Dynamic Forecast Percent Exceedance	
Patterns	22
Table 3. Restoration Year Type and Allocation	23
Table 4. Water Use Curve	39
Table 5. Reach 2 Losses in Exhibit B	43

Figures

Figure 1. Volumes and Periods Available for Flexible Management of Buffer Flows	6
Figure 2. Overlap Among Calendar, Water, and Restoration Years	21
Figure 3. SJRRP Annual Allocation at Friant Dam as a Function of Unimpaired Runoff at Friant Dam	24
Figure 4. SJRRP Annual Allocation at Gravelly Ford as a Function of Unimpaired Runoff at Friant Dam	24
Figure 5. Publication Schedule for SJRRP Monitoring and Analysis Plan	33
Figure 6. Gages and Reaches of the San Joaquin River in the SJRRP Restoration Area	41
Figure 7. Relationship Between Flows at Gravelly Ford Gage Station and Losses in Reach 2	43

Appendices

Appendix B – Restoration Annual Allocation Lookup Tables

- Appendix C Default Flow Schedules
- Appendix D Exhibit B of the Settlement
- Appendix E Reach Definition and CDEC Gages
- Appendix F Gravelly Ford Compliance
- Appendix G RWA Offset Programs and Projects
- Appendix H RWA Calculation Process

Abbreviations and Acronyms

AF	acre-foot
ATR	Annual Technical Report
CDEC	California Data Exchange Center
cfs	cubic feet per second
DWR	California Department of Water Resources
Guidelines	Restoration Flows Guidelines
NMFS	U.S. Department of Commerce, National Marine Fisheries Service
NWS	National Weather Service
Reclamation	U.S. Department of the Interior, Bureau of Reclamation
RWA	Recovered Water Account
Secretary	Secretary of the Interior
Settlement	Stipulation of Settlement in NRDC, et al. v. Kirk Rodgers, et al.
Settling Parties	Signatories to the Settlement
SJRRP	San Joaquin River Restoration Program
TAC	Technical Advisory Committee
TAF	thousand acre-feet
USFWS	U.S. Department of the Interior, Fish and Wildlife Service

1 Purpose

- 2 This document describes procedures and guidelines developed to comply with
- 3 Paragraph 13(j) of the Stipulation of Settlement in *NRDC*, et al. v. Kirk Rodgers, et al.
- 4 (Settlement). This includes additional provisions of the Settlement that address the
- 5 management of Restoration Flows, which includes, but not limited to, Paragraphs 13(a),
- 6 (c), (e), (f), and (i). This document generally follows the structure of the Settlement,
- 7 being organized into chapters related to specific paragraphs and subparagraphs therein.
- 8 In the event of inconsistencies between these Restoration Flows Guidelines (Guidelines)
- 9 and the Settlement or its implementing legislation, the Settlement and implementing
- 10 legislation shall govern.

1

This page left blank intentionally.

2 3

1 Paragraph 13(a) – Buffer Flows

2	releases of water from Friant Dam to the confluence of the Merced
3	River shall be made to achieve the Restoration Goal as follows:
4	1. All such additional releases from Friant Dam shall be in accordance
5	with the hydrographs attached hereto collectively as Exhibit B (the
6	"Base Flows"), plus releases of up to an additional ten percent
7	(10%) of the applicable hydrograph flows (the "Buffer Flows") may
8	be made by the Secretary, based upon the recommendation of the
9	Restoration Administrator to the Secretary, as provided in
10	Paragraph 18 and Exhibit B. The Base Flows, the Buffer Flows and
11	any additional water acquired by the Secretary from willing sellers
12	to meet the Restoration Goal are collectively referred to as the
13	"Restoration Flows." Additional water acquired by the Secretary
14	may be carried over or stored provided that doing so shall not
15	increase the water delivery reductions to any Friant Division long-
16	term contractor beyond that caused by releases made in accordance
17	with the hydrographs (Exhibit B) and the Buffer Flows.

This section discusses the release of Buffer Flows, as provided for in Paragraphs 13(a)and 18, and Exhibit B of the Settlement.

17 and 10, and Exhibit D of the Settlement.

20 Additional Settlement Text, Relevant to Buffer Flows

21 From Paragraph 18:

22	Consistent with Exhibit B, the Restoration Administrator shall make
23	recommendations to the Secretary concerning the manner in which the
24	hydrographs shall be implemented and when the Buffer Flows are
25	needed to help in meeting the Restoration Goal. In making such
26	recommendations, the Restoration Administrator shall consult with the
27	Technical Advisory Committee, provided that members of the Technical
28	Advisory Committee are timely available for such consultation. The
29	Secretary shall consider and implement these recommendations to the
30	extent consistent with applicable law, operational criteria (including
31	flood control, safety of dams, and operations and maintenance), and the
32	terms of this Settlement. Except as specifically provided in Exhibit A, the
33	Restoration Administrator shall not recommend changes in specific
34	release schedules within an. applicable hydrograph that change the total
35	amount of water otherwise required to be released pursuant to the
36	applicable hydrograph (Exhibit B) or which increase the water delivery
37	reductions to any Friant Division long-term contractors in accordance
38	with the hydrographs (Exhibit B) and the Buffer Flows.

1 From Exhibit B:

2	This Exhibit B sets forth the hydrographs which constitute the "Base
3	Flows" referenced in paragraph 13 of the Stipulation of Settlement. For
4	purposes of implementing the hydrographs, the following provisions
5	shall apply:
6	1. <u>Buffer Flows.</u> Paragraph 13 of the Stipulation of Settlement provides
7	for the Base Flows to be augmented by Buffer Flows of up to 10% of
8	the applicable hydrograph included in this Exhibit B. Except as
9	provided in Paragraph 4 of this Exhibit B, such Buffer Flows are
10	intended to augment the daily flows specified in the applicable
11	hydrograph. For purposes of this Exhibit, Base Flows and Buffer
12	Flows shall collectively be referred to as Restoration Flows.
13	222
14	4. <u>Flexibility in Timing of Releases</u>
15	a. In order to achieve the Restoration Goal and to avoid material
16	adverse impacts on existing fisheries downstream of Friant Dam, the
17	Parties agree to the following provisions to provide certain flexibility
18	in administration of the hydrographs and Buffer Flows.
19	>>>
20	c. The process for determining and implementing Buffer Flows is set
21	out in Paragraphs 13 and 18 of the Settlement, as implemented by
22	this Exhibit B. The Restoration Administrator, in consultation with
23	the Technical Advisory Committee, may recommend to the Secretary
24	that the daily releases provided for in the hydrographs, or as
25	modified pursuant to Paragraph 4(b) above, be augmented by
26	application of the Buffer Flows up to 10% of the daily flows. From
27	October 1 through December 31, the Buffer Flows shall be defined
28	as 10% of the total volume of Base Flows during that period, and
29	may be managed flexibly as a block of water during the Fail Period
• •	and four weeks earlier or later, as provided in Paragraph 4(b)
30	
30 31	above. Up to 50% of the Buffer Flows available from May 1 to
	above. Up to 50% of the Buffer Flows available from May 1 to September 30 not to exceed 5,000 acre feet may be moved to

1 **Recommendation for Release**

- 2 The release of Buffer Flows is subject to a written recommendation from the
- 3 Restoration Administrator to U.S. Department of the Interior, Bureau of Reclamation
- 4 (Reclamation). The recommendation shall include, at a minimum, the purpose and need
- 5 for such additional flows, the daily schedule, and the total volume of Buffer Flows
- 6 requested. Reclamation will first verify consistency with the Settlement and these
- 7 Guidelines, and then implement the Buffer Flows schedules through the operation of
- 8 Friant Dam. Reclamation shall account for the volumes of Buffer Flows released each
- 9 day, for each year, and for use of flexible management provisions. As described in
- 10 Paragraph 16(b)(1) of the Settlement, the use of Buffer Flows in any year will be applied
- 11 to the calculation of reductions in water deliveries in Paragraph 13(j)(iii) of these
- 12 Guidelines.

13 Volume of Buffer Flows Available

14 Paragraph 13 of the Settlement provides for the Base Flows to be augmented by

15 Buffer Flows up to 10 percent of the applicable hydrograph flows provided in the then-

16 current Restoration Flow Schedule, as shown in Table 1. Except as provided in

17 Paragraph 4(c) of Exhibit B to flexibly manage the Buffer Flows, as described below,

18 such Buffer Flows are intended to augment the daily flows specified in the applicable

19 schedule for releases from Friant Dam. Augmentation of the Base Flows does not extend

20 to any volumes released pursuant to Paragraph 13(c). Buffer Flows are not available in

21 the Critical-Low Restoration Year Type, as shown in Table 1.

22	
23	

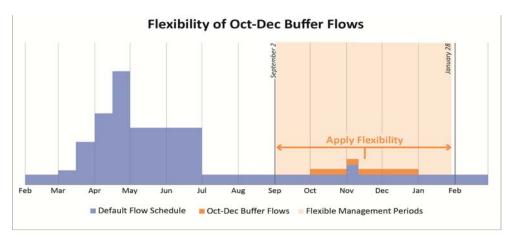
Table 1	
Volumes of Buffer Flows	∆vailahle

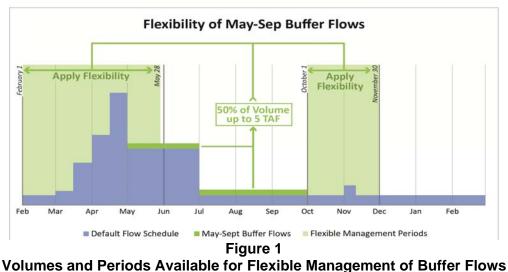
Restoration	Buffer Flows Available Between October 1 and	Buffer Flows Available Between May 1 and September 30 (acre-feet)			
Year Type	December 31 (acre-feet)	Maximum Volume Available	Volume Available for Flexible Management		
Wet	7,081	30,585	5,000		
Normal-Wet	7,081	10,621	5,000		
Normal-Dry	7,081	10,621	5,000		
Dry	7,081	10,621	5,000		
Critical-High	2,769	7,284	3,642		
Critical-Low	0	0	0		

24 Flexible Management of Buffer Flows

25 Paragraph 4 of Exhibit B provides two periods to flexibly manage Buffer Flows.

26 **Provision for Moving Volumes from October through December**


- 27 The full volume of Buffer Flows available between October 1 and December 31 may be
- released from Friant Dam at a time and rate recommended by the
- 29 Restoration Administrator between September 2 and January 28.


1 Provision for Moving Volumes from May through September

- 2 Up to 50 percent, not to exceed 5 thousand acre-feet (TAF), of the volume of
- 3 Buffer Flows available between May 1 and September 30 may be released from
- 4 Friant Dam at a time and rate recommended by the Restoration Administrator during the
- 5 Fall Flexible Flow Period, October 1 through November 30, and the Spring Flexible
- 6 Flow Period, February 1 through May 28.
- 7 Any volume of May-through-September Buffer Flows remaining may be scheduled
- 8 between May 1 and September 30, so long as it does not exceed either 10 percent of the
- 9 Restoration Flow Schedule for any day.

10 Example Availability and Flexibility of Buffer Flows

- 11 Table 1 presents the volume that would be available for flexible management for each
- 12 provision of the Settlement that specifically allows for flexible management of
- 13 Buffer Flow volumes, for each of the six Restoration Year flow schedules identified in
- 14 Exhibit B.
- 15 The volumes available for flexible management and periods available for management
- 16 are illustrated for a Wet Restoration Year in Figure 1.

17 18 19

Paragraph 13(c) – Releases for Unexpected Seepage Losses

3	In the event that the level of diversions (surface or underground) or
4	seepage losses increase beyond those assumed in Exhibit B, the
5	Secretary shall, subject to Paragraphs $13(c)(1)$ and $13(c)(2)$ relating to
6	unexpected seepage losses, release water from Friant Dam in
7	accordance with the guidelines provided in Paragraph 13(j) such that
8	the volume and timing of the Restoration Flows are not otherwise
9	impaired. With respect to seepage losses downstream of Gravelly Ford
10	that exceed the assumptions in Exhibit B ("Unexpected Seepage
11	Losses"), the Parties agree that any further releases or transfers within
12	the hydrograph required by this Paragraph 13(c) and implementation of
13	the measures set forth in Paragraphs $13(c)(1)$ and $13(c)(2)$ shall not
14	increase the water delivery reductions to any Friant Division long-term
15	contractor beyond that caused by releases made in accordance with the
16	hydrographs (Exhibit B) and Buffer Flows. The measures set forth in
17	Paragraphs $13(c)(1)$ and $13(c)(2)$ shall be the extent of the obligations of
18	the Secretary to compensate for Unexpected Seepage Losses. The
19	Secretary shall follow the procedures set forth in Paragraphs $13(c)(1)$
20	and $13(c)(2)$ to address Unexpected Seepage Losses:
21	(1) In preparation for the commencement of the Restoration Flows, the
22	Secretary initially shall acquire only from willing sellers not less
23	than 40,000 acre feet of water or options on such quantity of water
24	prior to the commencement of full Restoration Flows as provided in
25	Paragraph $13(i)$, which amount the Secretary shall utilize for
26	additional releases pursuant to this Paragraph $13(c)(1)$, unless the
27	Restoration Administrator recommends that a lesser amount is
28	required.
29	(2) The Secretary shall take the following steps, in the following order,
30	to address Unexpected Seepage Losses:
31	a. First, use any available, unstorable water not contracted for by
32	Friant Division long-term contractors;
33	b. Next, use water acquired from willing sellers, including any such
34	water that has been stored or carried over, until it has been
35	exhausted. This Paragraph $13(c)(2)(B)$ shall be implemented as
36	follows:
37	<i>i.</i> The Secretary shall first use water acquired pursuant to
38	Paragraph $13(c)(1)$ until such water is exhausted.
39	Thereafter, as of January 1^{st} of each year, the Secretary
40	shall have available at least 28,000 acre feet of water
41	acquired only from willing sellers, or options on such

1		quantity of water from willing sellers, which amount the
2		Secretary shall utilize for additional releases pursuant to
3		this Paragraph $13(c)(2)(B)(i)$. However, the Restoration
4		Administrator may recommend that an additional
5		amount, not to exceed 10,000 acre feet is needed; and
6		the Secretary shall acquire up to that amount
7		recommended by the Restoration Administrator only
8		from willing sellers, or options on such quantity of water
9		from willing sellers; or options on such quantity of water
-		
10		<i>ii.</i> Any water acquired from willing sellers pursuant to this
11		Paragraph $13(c)(2)(ii)$ that is not used in a given year
12		shall be stored, to the extent such storage is reasonably
13		available, to assist in meeting the Restoration Goal;
14		<i>iii.</i> In the event the Secretary has acquired water from
15		willing sellers under this Settlement that the Restoration
16		Administrator recommends is no longer necessary to
17		address Unexpected Seepage Losses, such water shall be
18		available to augment the Restoration Flows;
		-
19		iv. The Secretary shall provide notice to the Plaintiffs and
20		Friant Parties not later than December 1 of each year
21		regarding the status of acquisitions of water from willing
22		sellers pursuant to the provisions of this Paragraph
23		13(c);
24	С.	Next, if the Restoration Administrator recommends it and the
25		Secretary determines it to be practical, acquire additional water
26		only from willing sellers, in an amount not to exceed 22,000 acre
27		feet;
20	7	Nort in congrituation with the Dart with a Advisition of the
28	<i>d</i> .	Next, in consultation with the Restoration Administrator and
29		NMFS and consistent with Exhibit B, transfer water from the
30		applicable hydrograph for that year;
31	е.	Next, in consultation with the Restoration Administrator, use any
32	ε.	available Buffer Flows for that year.
52		
33	This section cove	are the nurchase and release of water for Unexpected Seenage I

This section covers the purchase and release of water for Unexpected Seepage Losses. The water acquired and used for Unexpected Seepage Losses shall be designated as Unexpected Seepage Water and accounted for by Reclamation. Paragraph 13(j)(iv) of these Guidelines describes the methods used to identify Unexpected Seepage Losses.

37 Acquisition Needs

In preparation for the commencement of the Restoration Flows, Reclamation initially
shall acquire only from willing sellers not less than 40,000 acre feet of water or options
on such quantity of water prior to the commencement of full Restoration Flows as

- 1 provided in Paragraph 13(i), which amount Reclamation shall utilize for additional
- 2 releases pursuant to Paragraph 13(c)(1), unless the Restoration Administrator
- 3 recommends that a lesser amount is required.
- 4 Reclamation shall first use the 40 TAF of water acquired, or other amount as
- 5 recommended by the Restoration Administrator, until such water is released from
- 6 Friant Dam or past the term on the options agreements. Thereafter, as of January 1 of
- 7 each year, Reclamation shall have available at least 28 TAF of water acquired only from
- 8 willing sellers, or options on such quantity of water from willing sellers. Each year, the
- 9 Restoration Administrator shall recommend whether or not an additional amount, not to
- 10 exceed 10 TAF is needed, and Reclamation shall acquire that water as soon as practical
- 11 only from willing sellers additional water, or options on such quantity of water from
- 12 willing sellers.
- 13 Next the Restoration Administrator shall recommend whether or not Reclamation should
- 14 acquire additional water only from willing sellers, in an amount not to exceed 22 TAF.
- 15 Reclamation shall determine if the additional acquisition is practical and acquire water
- 16 only from willing sellers.
- 17 In the event that full Restoration Flows cannot be released after January 1, 2014, the
- 18 water banked, transferred, and stored under the provisions of Paragraph 13(i) can be used
- 19 to meet acquisition requirements for Unexpected Seepage Losses.

20 **Procedures for Acquisition**

- 21 Reclamation shall solicit proposals for the acquisition of water or options from willing
- sellers pursuant to Federal rules and regulations for contract and financial assistance
- agreements. Proposals may be prioritized using one or more of the following criteria:
- 1. **Cost** –Procedures that provide for the lowest net cost of water.
- Flexibility Options and the ability to exercise options at different times of the
 year, during different year types, or over multiple years.
- 27 3. **Reliability** The ability to use water on a defined schedule.
- 28
 4. Compatibility with Paragraph 13(i) Procedures that provide for the ability to
 29
 bank, store, or sell water consistent with provisions in Paragraph 13(i).

30 Release of Unexpected Seepage Water

- 31 Unless otherwise recommended by the Restoration Administrator:
- To the extent diversion or losses increase beyond those assumed in Exhibit B,
- Reclamation will release additional water from Friant Dam such that the volume and timing of the Restoration Flows are not otherwise impaired.

To the extent that accretions in Reach 5 are less than those assumed in Exhibit B,
 Reclamation will not release additional water from Friant Dam.

Reclamation will determine that the volume and timing of the Restoration Flows are
 impaired according to the difference between scheduled and measured flows as

- 5 determined by Paragraph 13(j)(iv) for Unexpected Seepage Losses downstream from
- 6 Gravelly Ford. Reclamation shall release water from Friant Dam in the following order:
- Use any available unstorable water not contracted for by Friant Division longterm Contractors. After Reclamation declares the availability of water from Friant Dam made available pursuant to Section 215 of the Act of October 12, 1982 (215 Water) to Friant Long-Term Contractors that have executed 215 Water Contracts, Reclamation shall make releases of the remaining available unstorable water, as necessary, for Unexpected Seepage Losses. Such releases shall not require the use of acquired Unexpected Seepage Water.
- 14 2. If available, use acquired Unexpected Seepage Water.
- 15 3. If Reclamation determines that Unexpected Seepage Water will not be available at required levels during any period of the Restoration Year, Reclamation shall 16 modify the hydrograph to transfer water from the applicable hydrograph for that 17 year according to Method 3.1 Gamma, as described in Appendix G of the 18 SJRRP PEIS/R (Reclamation, 2012). The modified hydrograph shall be 19 20 transmitted to the Restoration Administrator and U.S. Department of Commerce, National Marine Fisheries Service (NMFS), for comments in writing within a 21 22 specified review period sufficient to make timely releases. Upon receipt of 23 comments, Reclamation will modify the default schedule and transfer water within the hydrograph, provided that the modifications will not increase the water 24 delivery reductions to Friant Division long-term contractors by the rescheduling 25 26 of water to a later date under conditions when a spill is reasonably foreseeable, as determined by Reclamation. 27
- 4. If the water cannot be transferred, Reclamation will use any available
 Buffer Flows for that year, in consultation with Restoration Administrator.

Accounting of Unexpected Seepage Water

- 31 As soon as practical after the end of each month, Reclamation shall report:
- The release of water under each of the steps to address Unexpected Seepage
 Losses.
- 34 2. The volume of Unexpected Seepage Water remaining.
- The volume of Restoration and/or Buffer Flows remaining and the corresponding
 revised flow schedule if Restoration Flows have been transferred within the year
 or Buffer Flows have been released to meet Unexpected Seepage Losses.

Disposal of Unexpected Seepage Water

2 As soon as practical, the Restoration Administrator shall recommend to Reclamation as

3 to whether the additional water acquired pursuant to Paragraph 13(c)(2)(B)(i) is no longer

4 necessary to address Unexpected Seepage Losses. Reclamation shall then make such

5 water available to the Restoration Administrator to augment Restoration Flows.

6 Any water acquired from willing sellers pursuant to Paragraph 13(c)(2)(b)(i) that is not

7 used in a given year shall be stored, to the extent such storage is reasonably available, to

8 assist in meeting the Restoration Goal. Rights and priorities for the storage of such

9 water, if any, shall be those rights and priorities of the willing seller.

10

1

2

This page left blank intentionally.

Paragraph 13(e) – Release Changes for Maintenance on Friant Division Facilities

3	Notwithstanding Paragraphs 13(a), (b), and (c), the Secretary may
4	temporarily increase, reduce, or discontinue the release of water called
5	for in the hydrographs shown in Exhibit B for the purpose of
6	investigating, inspecting, maintaining, repairing, or replacing any of the
7	facilities, or parts of facilities, of the Friant Division of the Central
8	Valley Project (the "CVP"), necessary for the release of such Restoration
9	Flows; however, except in cases of emergency, prior to taking any such
10	action, the Secretary shall consult with the Restoration Administrator
11	regarding the timing and implementation of any such action to avoid
12	adverse effects on fish to the extent possible. The Secretary shall use
13	reasonable efforts to avoid any such increase, reduction, or
14	discontinuance of release. Upon resumption of service after any such
15	reduction or discontinuance, the Secretary, in consultation with the
16	Restoration Administrator, shall release, to the extent reasonably
17	practicable, the quantity of water which would have been released in the
18	absence of such discontinuance or reduction when doing so will not
19	increase the water delivery reductions to any Friant Division long-term
20	contractors beyond what would have been caused by releases made in
21	accordance with the hydrographs (Exhibit B) and Buffer Flows.

This section relates to actions that affect the facilities of the Friant Division of the CVP such as investigating, inspecting, maintaining, repairing, or replacing any of these facilities, or parts of facilities. These facilities are listed in Appendix A (Description of Facilities of the Friant Division of the Central Valley Project). Unreleased Restoration Flows developed due to channel capacity limitations or maintenance on non-Friant Division facilities is addressed pursuant to Paragraph 13(i) of the Settlement and the corresponding chapter of these Guidelines.

- 29 When such actions are necessary Reclamation will make reasonable efforts to avoid any
- 30 increase, reduction, or discontinuance of releases while performing the actions. If
- 31 changes in the release are required Reclamation will consult with the Restoration
- 32 Administrator as soon as practical regarding the timing and implementation of any action
- to avoid adverse effects on fish to the extent possible.
- 34 Reclamation will coordinate with the Restoration Administrator after any such increase,
- reduction or discontinuance of releases, and shall release, to the extent reasonably
- 36 practicable, the quantity of water which would have been released without these
- temporary changes occurring, so long as these releases will not increase the water
- delivery reductions to any Friant Division long-term contractors beyond what would have

- 1 been caused by releases made in accordance with the then-current Restoration Flow
- 2 schedule.

Paragraphs 13(f) and (h) – Coordination on Downstream Losses

3 Paragraph 13(f)

4The Parties agree to work together in identifying any increased5downstream surface or underground diversions and the causes of any6seepage losses above those assumed in Exhibit B and in identifying steps7that may be taken to prevent or redress such increased downstream8surface or underground diversions or seepage losses. Such steps may9include, but are not limited to, consideration and review of appropriate10enforcement proceedings.

11 Paragraph 13(h)

12	Subject to existing downstream diversion, rights, the Parties intend that
13	the Secretary, in cooperation with the Plaintiffs and Friant Parties, shall,
14	to the extent permitted by applicable law and to meet the Restoration
15	Goal and Water Management Goal, retain, acquire, or perfect all rights
16	to manage and control all Restoration flows and all Interim Flows (as
17	provided in Paragraph 15) from Friant Dam to the Sacramento-San
18	Joaquin Delta; provided, however, that neither the Restoration Flows
19	nor the Interim Flows shall be credited against the Secretary's
20	obligations under CVPIA SS $3460(b)(2)$, In addition, to the extent
21	permitted by applicable law and with the cooperation of the other
22	Parties hereto, the Secretary agrees to undertake all reasonable
23	measures to protect such rights to manage and control Restoration
24	Flows and Interim Flows, including requesting necessary permit
25	modifications and initiation of any appropriate enforcement proceedings
26	to prevent unlawful diversions of or interference with Restoration Flows
27	and Interim Flows.

Reclamation will support the quantification of downstream losses, for comparison to Exhibit B assumptions, through actions described in Paragraph 13(j)(iv) of these Guidelines. Each Party agrees to use their resources, as they deem necessary, to identify likely causes of increases in downstream surface or underground diversions. Each Party agrees that they have an individual obligation to identify problems and, if a problem is identified, to coordinate with the other Parties and the Restoration Administrator to determine levels of interest of each party and potential methods to address the problem.

- 1 The Parties agree that, if an issue arises that requires substantial action to appropriately
- 2 address, that each interested Party will contribute to the development of protocols,
- 3 separate from these RFGs, in order to address the problem. The Parties will meet
- 4 annually on or about September 1 to confer on prior year and anticipated activities by
- 5 each of the Parties related to observations of activities within the Restoration Area that
- 6 could affect seepage and/or diversion losses in each of the reaches.
- 7 If an enforcement action is identified, Reclamation, with the cooperation of the other
- 8 Settling Parties, will initiate proceedings to prevent unlawful diversions of or interference
- 9 with Restoration Flows.

Paragraph 13(i) – Unreleased Restoration Flows

3	The Secretary shall commence the Restoration Flows at the earliest
4	possible date, consistent with the Restoration Goal, and the Restoration
5	Administrator shall recommend to the Secretary the date for
6	commencement of the Restoration Flows. In recommending the date for
7	commencement of the Restoration Flows, the Restoration Administrator
8	shall consider the state of completion of the measures and improvements
9	identified in Paragraph $11(a)$; provided, however, that the full
10	Restoration Flows shall commence on a date certain no later than
11	January 1, 2014. If, for any reason, full Restoration Flows are not
12 13	released in any year beginning January 1, 2014, the Secretary shall
13	release as much of the Restoration Flows as possible, in consultation with the Restoration Administrator, in light of them existing channel
14	with the Restoration Administrator, in light of then existing channel capacity and without delaying completion of the Phase 1 improvements.
15	In addition, the Secretary, in consultation with the Restoration
10	Administrator, shall use the amount of the Restoration Flows not
18	released in any such year by taking one or more of the following steps
19	that best achieve the Restoration Goal, as determined by the Secretary,
20	in such year or future years:
21 22	(1) First, if practical, enter into mutually acceptable agreements with Friant Division long-term contractors to
23 24	a. bank, store, or exchange such water for future use to supplement future Restoration Flows, or
25 26 27	b. transfer or sell such water and deposit the proceeds of such transfer or sale into the Restoration Fund created by this Settlement; or
28	(2) Enter into mutually acceptable agreements with third parties to
29 30	a. bank, store, or exchange such water for future use to supplement future Restoration Flows, or
31 32 33	b. transfer or sell such water and deposit the proceeds of such transfer or sale into the Restoration Fund created by this Settlement; or
34 35 36 37	(3) Release the water from Friant Dam during times of the year other than those specified in the applicable hydrograph as recommended by the Restoration Administrator, subject to flood control, safety of dams and operations and maintenance requirements.

1	The Secretary shall not undertake any action pursuant to Paragraphs
2	13(i)(1) through $13(i)(3)$ that increases the water delivery reductions to
3	any Friant Division long-term contractor beyond what would have been
4	caused by releases in accordance with the hydrographs (Exhibit B).

5 Commencement of Restoration Flows

6 The Secretary shall commence the Restoration Flows at the earliest possible date,

7 consistent with the Restoration Goal, and the Restoration Administrator shall recommend

8 to Reclamation the date for commencement of the Restoration Flows. In recommending

9 the date for commencement of the Restoration Flows, the Restoration Administrator shall

10 consider the state of completion of the measures and improvements identified in

11 Paragraph 11(a); provided, however, that the full Restoration Flows shall commence on a

12 date certain no later than January 1, 2014.

Determination of Unreleased Restoration Flows

14 If, for any reason, full Restoration Flows are not released in any year beginning

15 January 1, 2014, Reclamation shall release as much of the Restoration Flows as possible,

16 in consultation with the Restoration Administrator in light of then existing channel

17 capacity and without delaying completion of the Phase 1 improvements. Unreleased

18 Restoration Flows are those Restoration Flows recommended by the Restoration

19 Administrator for release from Friant Dam, consistent with the requirements of these

20 Guidelines, and that the Secretary is unable to release from Friant Dam for any reason.

21 During years when channel capacity constraints or completion of Phase 1 improvements

are known to limit the full release of Restoration Flows, the Restoration Administrator

shall submit two recommendations in order that the Unreleased Restoration Flows can bedetermined:

- Unconstrained Recommendation proposed release of full Restoration Flows
 with no constraints.
- Capacity Limited Recommendation proposed release of full Restoration
 Flows in consideration of known capacity constraints.

29 In the event that no recommendations have been provided or accepted, then consistent

30 with Paragraph 13(j)(i) of these Guidelines, a Default Hydrograph will be applied to the

31 two Recommendations.

32 Steps to Best Achieve the Restoration Goal

33 In order to best achieve the Restoration Goal, agreements for Unreleased Restoration

34 Flows shall be entered into by Reclamation to accomplish the following means:

- Stored, banked, exchanged or released to supplement future Restoration Flows;
 and/or
- 3 2. Sold and the proceeds of such sale deposited into the San Joaquin River
 4 Restoration Fund.
- 5 Reclamation is responsible for determining the mean(s) to manage
- 6 Unreleased Restoration Flows and entering into any necessary agreements to best achieve
- 7 the Restoration Goal.

8 Priorities for Managing Unreleased Restoration Flows

9 10 11 12	release Unrelea will use the orc) establishes the priority for Reclamation to bank, store, exchange, sell or ased Restoration Flows to best achieve the Restoration Goal. Reclamation der identified and to the extent that it best achieves the Restoration Goal and mutually acceptable:
13 14 15	1.	 Paragraph 13(i)(1)(A) directs the Secretary to bank, store, or exchange Unreleased Restoration Flows with Friant Contractors for future use to supplement future Restoration Flows.
16 17 18	2.	 Paragraph 13(i)(1)(B) directs the Secretary to transfer or sell Unreleased Restoration Flows to Friant Contractors and deposit such funds into the Restoration Fund.
19 20 21	3.	 Paragraph 13(i)(2)(A) directs the Secretary to bank, store, or exchange Unreleased Restoration Flows with non-Friant Contractors for future use to supplement future Restoration Flows.
22 23 24	4.	 Paragraph 13(i)(2)(B) directs Secretary to transfer or sell Unreleased Restoration Flows to non-Friant Contractors and deposit such funds into the Restoration Fund.
25 26 27 28 29	5.	– Paragraph 13(i)(3), directs the Secretary to release Unreleased Restoration Flows from Friant Dam during times of the year other than those specified in the applicable hydrograph as recommended by the Restoration Administrator, subject to flood control, safety of dams and operations and maintenance requirements.

30 Management of Unreleased Restoration Flows

Unreleased Restoration Flows shall be available as soon as a recommendation is provided
 by the Restoration Administrator and approved by Reclamation. Delivery of Unreleased
 Restoration Flows from Friant Dam shall be subject to the availability of water in Friant
 Dam, the delivery of contracted supplies to Friant Contractors, flood control, safety of

35 dams, and operations and maintenance requirements.

- 1 Reclamation shall update the available volume of Unreleased Restoration Flows for the
- 2 current year every time a new schedule is submitted by the Restoration Administrator and
- 3 approved by Reclamation. As soon as practical following a flood management release,
- 4 Reclamation shall update the available volume of Unreleased Restoration Flows to
- 5 account for any Restoration Flows released during that flood management release.

6 Prior to March 15, Reclamation shall have made an initial determination of the

7 Unreleased Restoration Flows for the year and by no later than May 1 will have in place

8 the necessary agreements for the storage, banking, exchange, sale or release of

- 9 Unreleased Restoration Flows. Reclamation shall consult with the Restoration
- 10 Administrator prior to entering into any agreement for the storage, banking, exchange,
- 11 and/or release of Unreleased Restoration Flows for the purposes of supplementing future
- 12 Restoration Flows. Except for releases pursuant to Paragraph 13(c), only the Restoration
- 13 Administrator may recommend the release of previously stored, banked, and/or
- 14 exchanged Unreleased Restoration Flows to supplement Restoration Flows. Reclamation
- 15 may release previously stored, banked, and/or exchanged Unreleased Restoration Flows
- 16 pursuant to Paragraph 13(c) consistent with the procedures outlines in Paragraph 13(c) of
- 17 this guidance document.

18 Exhibit B of the Settlement defines the volume of water to be released as Restoration

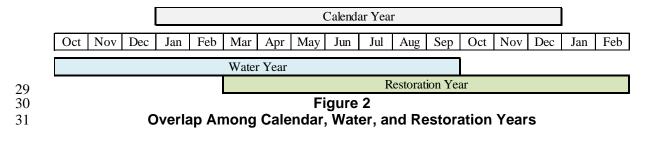
19 Flows. Reclamation shall not undertake any action pursuant to Paragraph 13(i) that

20 increases the water delivery reductions to any Friant Contractors beyond the volume of

21 reductions beyond what would have been caused by the release of Restoration Flows in

22 accordance with the hydrographs in Exhibit B.

- a. Volumes of Unreleased Restoration Flows delivered during the prior Restoration
 Year(s).
- b. Volumes of Unreleased Restoration Flows available for recommendation by the
 Restoration Administrator for supplementing future Restoration Flows.
- 29 c. Projection of Unreleased Restoration Flows for the upcoming Restoration Year.
- d. Deposit of funds from sales of Unreleased Restoration Flows during the prior
 Restoration Year(s).
- 32


Annually, commencing on March 1, 2015, Reclamation shall provide the Settling Parties
 with an annual report on the:

Paragraph 13(j)(i) – Restoration Year Type and Flow Schedules

3	Procedures for determining water-year types and the timing of the
4	Restoration Flows consistent with the hydrograph releases (Exhibit B);
5	This section describes the process to develop the volume and pattern of Restoration
6	Flows, including guidelines for transmissions of year types and timing (default flow
7	schedules) from Reclamation to the Restoration Administrator and guidelines for
8	Reclamation to receive the Restoration Administrator flow schedule recommendation.
9	The ecological basis is described in Appendix G of the SJRRP PEIS/R (Reclamation,
10	2012). The following section addresses Paragraph 13(j)(i) by:
11	• Technical Process for Setting the Year Type and Default Flow Schedule –
12	This section provides technical procedures for: determining the volume of water
13	year runoff on the San Joaquin River, identifying the Restoration Year type, and
14	setting the default flow schedule.
15	Coordination with the Restoration Administrator on the Release of
16	Restoration Flows – This section provides guidance for communications
17	between Reclamation and the Restoration Administrator, including schedules and
18	content for the following transmissions: Reclamation determinations of year type
19	and default flow schedules, Restoration Administrator flow schedule
20	recommendations, evaluation of Restoration Administrator recommendations for
21	consistency with the Settlement and Settlement Act, and management of Friant
22	Dam for Restoration Flows.

Technical Process for Setting the Year Type and Default Flow Schedule

The full natural runoff on the San Joaquin River at Friant Dam over the course of the water year (October through September) sets the allocations and default releases for each Restoration Year (March through February). The overlap of Restoration, calendar, and water years is illustrated in Figure 2.

1 Step 1: Determining Water Year Runoff

2 Initial determinations of unimpaired water year runoff at Friant Dam will be conducted

- 3 by Reclamation using the following:
- A. San Joaquin River Water Year Forecast Breakdown, Monthly B120 Report
 Update, DWR.
- 6 B. April- July forecast, weekly updates to B120 Report, DWR.
- C. Unimpaired runoff to Lake Millerton, reported as "Full Natural Millerton" by the
 Central Valley Operations Office (Reclamation) website.

9 Inflow estimates used for setting the volume of water to be scheduled for release as Restoration Flows (Restoration Annual Allocations) will be based on Forecast Use 10 Option 1D, which specifies percent exceedance forecast values that vary by month and 11 year type. Table 2 shows the forecast patterns by month and year type. Forecast Use 12 Option 1D requires an initial pattern year type to be determined using the current forecast 13 14 values. The pattern year type is used along with the forecast month to determine which forecast percentage to use for the Restoration Allocation. If the 50-percent water year 15 16 exceedance forecast is greater than or equal to the threshold value of 1,831 TAF (50-year 17 average unimpaired water year inflow), then the 50-percent exceedance forecast is used to determine the pattern year type following the boundaries defined in Table 2. If the 18 50-percent exceedance forecast is less than 1,831 TAF, the current 90 percent exceedance 19 20 forecast is used to determine the pattern year type. The average value (1,831 TAF) is updated in the DWR Bulletin 120 approximately every 5 years. Thus the Option 1D 21 22 threshold value will be adjusted every 5 years to maintain the current 50-year average 23 unimpaired runoff. Once a pattern year type is determined, exceedance percentage for that particular month will be selected from Table 2. The corresponding unimpaired runoff 24 shall be used to determine the Restoration Flow allocation. 25

26 27

Forecast Use Option 1D Dynamic Forecast Percent Exceedance Patterns					
Unimpaired Runoff to Lake Millerton (TAF)	Pattern Year Type	February (percentile)	March (percentile)	April (percentile)	May (percentile)
Below 400	Critical-Low	90	90	90	90
400 to 670	Critical-High	90	90	90	90
670 to 930	Dry	90	90	75	75
930 to 1,450	Normal-Dry	90	90	75	75
1,450 to 2,500	Normal-Wet	75	75	50	50
Above 2,500	Wet	50	50	50	50

Table 2

28 In addition to each runoff determination, Reclamation will provide Restoration Release

allocations that would result from the 10, 50 and 90th percentiles.

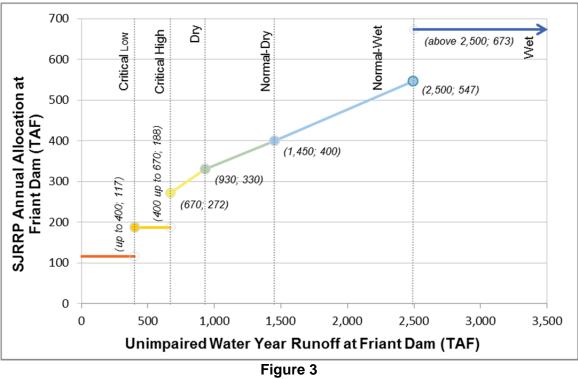
30 In addition to the above, Reclamation will consider other available information to ensure

that the best available records and forecast information are being applied. Reclamation

- 1 will document the sources and information used to produce runoff forecasts, which may
- 2 include:
- A. Raw ESP Water Supply Forecast for the Water Year, as reported by the National
 Weather Service (NWS) California-Nevada River Forecast Center¹
- 5 B. Southern California Edison snowpack surveys and runoff estimates.
- 6 Appendix D outlines the procedures for using the best available information to determine
- 7 the forecasted runoff if the DWR forecasts differs significantly from the NWS and SCE
- 8 forecasts.

9 Step 2: Identifying Restoration Year Type and Calculating Annual 10 Allocation for Restoration Flows

- 11 Table 3 identifies the Restoration annual allocation with respect to the unimpaired water
- 12 year runoff, along with the ranges of Restoration Year types identified in the Settlement.
- 13


14

Restoration Year Type and Allocation					
Unimpaired Water Year Runoff (TAF)	Restoration Year Type (Range of Runoff, TAF)				
below 400	116,866	3,620	Critical-Low (up to 400)		
at 400 and up to 670	187,785	74,539	Critical-High (400 – 670)		
at 670	272,278	158,953	Dry (670 – 930)		
at 930	330,256	216,931			
		·	Normal-Dry (930 – 1,450)		
at 1,450	400,256	286,931	Normal-Wet		
at 2,500	at 2,500 547,444		(1,450 - 2,500)		
above 2,500	673,487	560,162	Wet (2,500 +)		

Table 3

- 15 Reclamation will interpolate between the volumes identified in Table 3 to calculate the
- 16 annual allocation for each Restoration Year to the nearest TAF. Figures 3 and 4, below,
- 17 illustrates this method.

¹ http://www.cnrfc.noaa.gov/

SJRRP Annual Allocation at Friant Dam as a Function of Unimpaired Runoff at Friant Dam

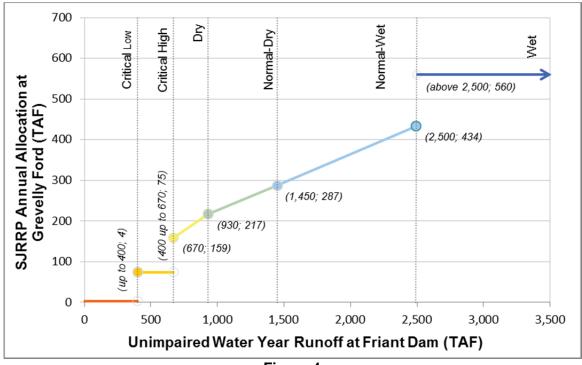


Figure 4 SJRRP Annual Allocation at Gravelly Ford as a Function of Unimpaired Runoff at Friant Dam

1 Step 3: Setting the Default Flow Schedule

- 2 Default flow schedules prepared by Reclamation provide an initial daily distribution of
- 3 the annual allocation and a starting point for Restoration Administrator flow schedule
- 4 development. Default flow schedules do not consider Settlement provisions for flexible
- 5 flow shifts, real-time management of flows, use of buffer flows or the potential for
- 6 releases above the requirements of the Settlement for flood management, or management
- 7 of unexpected seepage losses. Following acceptance of Restoration Administrator flow
- 8 schedules, the default schedules are no longer relevant. The Restoration Administrator
- 9 may submit a new default flow schedule for review and acceptance by all Settling Parties.
- 10 Appendix D (Default Hydrograph Lookup Tables) provides lookup tables for identifying
- 11 default flow schedules for flows at Friant Dam and Gravelly Ford. The lookup tables
- 12 index flow schedules by both date and remaining allocation. The following sections
- 13 describe how to calculate and use the remaining allocation to look up the default flow
- 14 schedule.
- 15 The Restoration annual allocation lookup tables in Appendix B (Restoration Annual
- 16 Allocation Lookup Tables), or additional tables for time periods not considered in
- 17 Appendix B, can be derived from the procedures in Appendix C (Default Flow
- 18 Schedules).

19 Calculating the Remaining Allocation

- 20 The remaining allocation is the annual allocation reduced by the volume of Restoration
- 21 Flows released to date. The volume of Restoration Flows released to date is the sum of
- 22 mean daily flows at Gravelly Ford less 5 cfs. Prior and anticipated releases of Buffer
- 23 Flows, purchased water, other releases in excess of the Restoration Flow schedule,
- 24 including releases for other contractual obligations, will not be debited against the
- 25 Restoration annual allocation.

26 Setting Default Flow Schedules

- 27 The tables in Appendix C (Default Flow Schedules) reflect default flow schedules for
- each inflection point in Figure 3 for each date considered in the tables, the portion of
- the default flow schedule that has passed has been subtracted from each row's total
- 30 annual allocation to determine the remaining allocation for each date.
- To use the tables, first identify the date in the top row. Read down the column labeled
- 32 "Remaining Allocation" and identify the row corresponding to the remaining Restoration
- annual allocation. Read across that row to obtain the default flow schedule for the
- 34 duration of the Restoration Year. In the event that the remaining allocation is not equal
- to one of the listed volumes, but instead falls between two listed values; the default flow
- 36 schedule will be determined by linear-interpolation of the two bordering schedules.
- 37 The tables provided in Appendix D (Default Hydrograph Lookup Tables) reflect
- implementation of the 'gamma' transformation pathway, which is one of the four
- 39 possible methods for distributing an annual allocation into a default flow schedule. The
- 40 Restoration Administrator may request changes to the default flow schedule to use any of
- 41 the transformations, or some hybrid thereof.

Coordination with the Restoration Administrator on the Release of Restoration Flows

3 On or before January 20 of each year, Reclamation will transmit the first determination of the Restoration Year Type and Default Flow Schedule for the following Restoration 4 Year. Default flow schedules will be updated in a timely manner following each monthly 5 release of DWR's Bulletin 120 water year runoff forecast for the San Joaquin River; or 6 7 more frequently if determined necessary by Reclamation or requested by the Restoration Administrator. Reclamation will discuss forecasts with the Restoration Administrator 8 9 before a declaration of default flow schedule. Monthly or more frequent updates to the allocation and schedule, monitoring data, and Friant Dam operations will continue until 10 11 the Restoration Administrator and Reclamation agree that additional meetings throughout the year are no longer necessary. The final determination of Restoration annual 12 13 allocation and default flow schedule will occur no later than September 30.

- 14 Within 2 weeks of each Restoration Year Type declaration the Restoration Administrator
- 15 may recommend modifications to default flow schedules. Reclamation will first verify
- 16 consistency with the Settlement and these Guidelines, and then implement the flow
- 17 schedules through the operation of Friant Dam. In all cases, Reclamation will operate to
- 18 the latest, implementable flow schedule recommendation. The following section
- 19 provides guidance on the schedule and content of information transmitted by
- 20 Reclamation to the Restoration Administrator to support a recommendation, and
- 21 guidance on information provided to Reclamation by the Restoration Administrator in the 22 form of a recommondation
- 22 form of a recommendation.

23 Transmissions to the Restoration Administrator from Reclamation

With each determination of Restoration Year Type and Default Flow Schedule update
 Reclamation will transmit the following to the Restoration Administrator, in writing:

- A Restoration budget, including: the annual allocation; releases counted toward the annual allocation; releases of Buffer Flows; releases of purchased water; the remaining allocation; and volumes of water banked, stored, or exchanged for future use to supplement future Restoration Flows.
- An accounting of releases of Interim and Restoration flows, including Buffer
 Flows and purchased water, and an accounting of total flows at each of the
 monitoring locations specified in the Settlement.
- Flow targets at Gravelly Ford, and the anticipated schedule of releases at Friant
 Dam, for the remainder of the Restoration Year.
- Operating criteria, including ramping rate constraints, channel conveyance
 capacity, scheduled maintenance that may restrict the release of Restoration
 Flows, and relevant permit requirements.
- Flow gains and losses for each reach of the river below Gravelly Ford.

- 1 Reclamation will notify the Restoration Administrator when conditions necessitate a
- 2 change in operating criteria for Friant Dam. Unless immediate action is required (e.g., to
- 3 provide public health and safety), Reclamation will provide the Restoration
- 4 Administrator with no less than a 48-hour notice in writing and by phone of changes to
- 5 the Restoration Administrator's most recent flow recommendation. Reclamation will
- 6 make information publically available and notify the Restoration Administrator and
- 7 Settling Parties of its availability.

8 **Consultation with Federal Fisheries Agencies**

9 As described in the Settlement (Exhibit D), the Restoration Administrator will consult

10 with the U.S. Fish and Wildlife Service (USFWS) and NMFS, and these agencies are

11 responsible for providing input on the Restoration Administrator flow recommendations

12 for meeting the Restoration Goal through participation in the San Joaquin River

13 Restoration Program (SJRRP) Technical Advisory Committee (TAC).

14 **Restoration Administrator Flow Schedule Recommendations**

15 The Restoration Administrator will consult with the TAC and make an initial flow

16 recommendation to Reclamation by January 31 of each year following the receipt of

17 Reclamation's initial default flow schedule. When Reclamation provides an updated

18 forecast and the default flow schedules, the Restoration Administrator will have three

19 days to update the then-current Restoration Flow schedule before Reclamation makes any

20 changes in flow release from the Restoration Administrator's most recently adopted

21 recommendation. Reclamation may request additional recommendations as necessary to

22 assist its determination of water supply allocations, or to help manage emergency or

23 rapidly changing hydrologic conditions. At any time, the Restoration Administrator may

submit a new flow schedule or revise an existing flow schedule, provided that the

26 Restoration Administrator recommendations include the following, as appropriate:

- Flow Schedule The rate and timing of Friant Dam releases for the entire annual allocation across the current Restoration Year. The schedule should demonstrate consistency with the annual allocation, and other provisions of the Settlement.
- Pulse Flow Recommendations The ramping rates, time windows, and peak
 flow specifications for desired pulses.
- **Buffer Flows** The recommended use of Buffer Flows.
- Purchased Water The recommended acquisition and use of water purchased to support the Restoration Goal.
- Use of Banked or Stored Water A recommendation regarding the use of water
 that has been banked or stored pursuant to Paragraphs 13(i)(1) and (2).

²⁵ recommendation is consistent with the Settlement and these Guidelines.

- Recommendation on Unreleased Flows When there are Unreleased
 Restoration Flows, the Restoration Administrator may make recommendations
 regarding the management of such water.
- Modifications to Flood Releases Suggestions on how ramping up to or down
 from a flood could improve success in meeting the Restoration Goal.
- Additional Points of Concern Concerns or suggestions for consideration by
 Reclamation that fall outside of the sections above.

8 Consistency of Restoration Administrator Recommendations with 9 Settlement and Settlement Act

- 10 Reclamation will determine the consistency of Restoration Administrator
- 11 recommendations with the Settlement and Settlement Act, including the assessment of
- 12 whether the Restoration Administrator Restoration Flow recommendations are consistent
- 13 with the Settlement and operating criteria.
- Reclamation will implement the Restoration Administrator flow schedule under thefollowing conditions:
- The recommendation schedules a volume of water equal to the most current full allocation for Restoration, with flexible flow shifts, and additional schedules of Buffer Flow releases, recommended releases of purchased water, and releases of water pursuant to Paragraph 13(i)
- The timing of releases is consistent with provisions for flexible flow operations in
 Exhibit B of the Settlement, provided in Appendix D (Exhibit B of the
 Settlement)
- The implementation of releases will be consistent with the Settlement regarding effects on water supply reductions to Friant Division long-term contractors
- The releases do not impact public safety.
- The recommendation is otherwise consistent with the terms and conditions of the Settlement, the Settlement Act, and permit conditions
- 28 If the recommendation departs from these terms, but there is agreement among

29 Reclamation and the Settling Parties that the changes are acceptable, then Reclamation

- 30 will accept the recommended changes.
- 31 The Restoration Administrator will be notified of constraints on operating criteria with
- 32 each transmission of the default flow schedule, and within 24 hours of an event or
- 33 emergency condition that requires a departure from the Restoration Administrator
- 34 recommendations.

- 1 Reclamation must receive a recommendation which is consistent with the Settlement and
- 2 Settlement Act before implementing a change in releases. Each Restoration
- 3 Administrator recommendation will be reviewed for acceptability by Reclamation within
- 4 5 days of receipt.
- 5 In the event that the Restoration Administrator submits a request for an immediate
- 6 change in flows to respond to conditions in the river that affect the near-term survival of
- 7 fish or otherwise negatively affects the Restoration Goal, Reclamation will respond
- 8 within 24 hours by making the requested change. If the Restoration Administrator
- 9 recommendation does not conform to either the Settlement or safe operating criteria,
- 10 Reclamation will inform the Restoration Administrator within 24 hours of any
- 11 discrepancies and request a revised recommendation.

12 Management of Friant Dam Releases for Flow Targets

- 13 Reclamation will release the flow schedule at Friant Dam and to meet targets at
- 14 Gravelly Ford. Releases will meet channel losses and riparian diversion requirements in
- 15 Reach 1, including attaining the 5 cfs of flow requirement at Gravelly Ford.
- 16 Paragraph 13(j)(ii) of this guidance document describes procedures for compliance with
- 17 Gravelly Ford flow targets; Paragraph 13(j)(iv), releases for Unexpected Seepage Losses.

1

2

This page left blank intentionally.

Paragraph 13(j)(ii) – Measuring, Monitoring, and Reporting of Restoration Flows

4	Procedures for the measurement, monitoring and reporting of the daily
5	releases of the Restoration Flows and the rate of flow at the locations
6	listed in Paragraph 13(g) to assess compliance with the hydrographs
7	(Exhibit B) and any other applicable releases (e.g., Buffer Flows)

8 Reclamation will finalize and publish flow rates for Restoration Flows and other 9 applicable releases within 20 days of the end of the prior month. Reclamation and the 10 implementing agencies will assist the Restoration Administrator and the TAC in the 11 development of information needed to inform the Restoration Administrator's flow 12 recommendations. This assistance will be guided by the development of an annual 13 Monitoring and Analysis Plan.

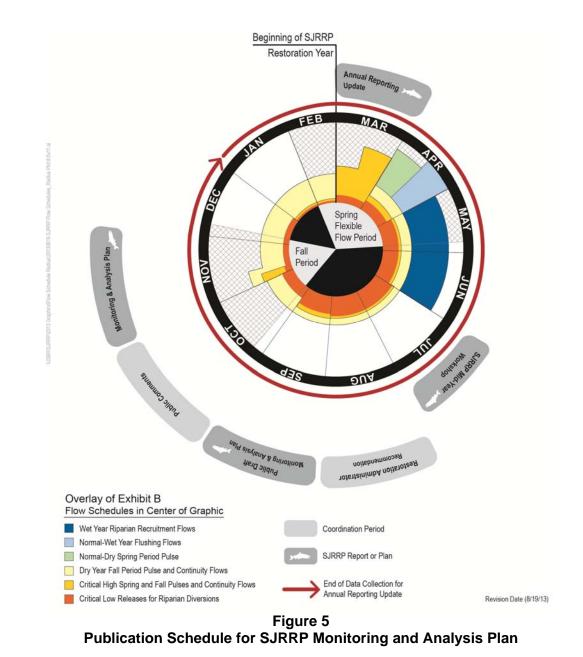
Measurement, Monitoring, and Reporting of Daily Flow Rates

16 In addition to publishing finalized monthly flow rates and volumes, Reclamation will

17 provide provisional telemetry data on-line, via CDEC, and publish final Quality

18 Assurance/Quality Control mean daily flow data on-line as it becomes available. Final

19 flow data will be made available no later than the month following the end of the


20 reporting period for the following locations:

- 1. At or immediately below Friant Dam (measured at CDEC station MIL)[.]
- 22 2. At Gravelly Ford (measured at CDEC station GRF).
- 23 3. Below the Chowchilla Bifurcation Structure (measured at CDEC station SJB).
- 24 4. Below Sack Dam (measured at CDEC station SDP).
- 25 5. At the head of Reach 4B (measured at CDEC station SWA).
- At the San Joaquin River and Merced River confluence (measured at CDEC station SMN).
- 28 Electronic links to the online data are provided in Appendix E (Reach Definitions and
- 29 CDEC Gages) for each CDEC station. Flow data collection will comply with U.S.
- 30 Geological Survey guidelines for flow measurement (Buchanan and Somers, 1969).

Development and Publication of the Monitoring and Analysis Plan

3 The Monitoring and Analysis Plan will include the following information:

4 5 6 7	• A discussion of the Restoration Administrator recommendations and factors influencing the release of Restoration Flows (e.g., operating agreements, construction schedules, management plans, and environmental compliance coverage)
8 9 10 11	• A description of planned monitoring activities and locations for the following Restoration Year, including a plan for monitoring and determining unexpected gains and losses in reaches of the river between Gravelly Ford and the Merced River.
12 13 14 15	• A summary of actions taken during the previous year to implement the Settlement and Restoration Administrator recommendations, including an account of Restoration Flows, physical and biological monitoring results, and real-time operation decisions. The summaries will also include the following:
16	- A synthesis of key findings and information needs for future efforts
17 18	 Information needs, purpose, and objectives for monitoring and analysis activities
19 20	 An inventory of physical and biological monitoring activities conducted or proposed for implementation
21	 Limitations on the release of Restoration Flows
22	- Summaries and technical data for studies and monitoring activities
23 24	• A list of technical tools for evaluating and predicting conditions in the San Joaquin River
25 26 27	To the greatest extent possible, the Monitoring and Analysis Plan will incorporate Restoration Administrator recommendations for monitoring and analysis. The schedule for coordination on the Monitoring and Analysis Plan is displayed in Figure 5, below.

4 Flow Compliance Evaluation

5 The following compliance protocols will meet the terms and conditions of the Settlement 6 with respect to flows at Friant Dam and Gravelly Ford.

- 7 A. Friant Dam and Gravelly Ford Flow Targets
- The daily targets for the Friant release and Gravelly Ford flows are those set
 forth in Exhibit B of the Settlement as modified by recommendation from the
 Restoration Administrator and implemented by Reclamation.

1 2 2 3 4 5	When changing the release from Friant Dam to achieve a new target value at Gravelly Ford, Reclamation shall adjust releases based on the difference between reported Gravelly Ford flows and the target at Gravelly Ford. Flow adjustments at Friant Dam shall be made any day of the week to achieve a new target value at Gravelly Ford.
6 B. F	riant Dam and Gravelly Ford Flow Target Compliance
7 1 8 9	. Flow values used to measure compliance will be the Friant release and the 6 a.m. Gravelly Ford discharge as reported each day in the Millerton Daily Report, averaged over the current and 2 previous days.
10 2 11 12	. If the measured flows at Gravelly Ford are not within +/- 10 cfs of the flow target, then the Friant release shall be adjusted (increased/decreased) as follows:
13	a. Weekly flow adjustments shall continue until the flow target is reached.
14 15 16	b. If the measured flows at Gravelly Ford exceed the flow target, the Friant Dam release can be adjusted, but not below the flow release target from Friant Dam.
17 3 18 19 20	. For compliance during times outside the Spring Pulse, Riparian Recruitment, and Fall Pulse periods, Reclamation shall evaluate losses from Friant Dam to Gravelly Ford twice a week, Mondays and Fridays, and make adjustments at Friant Dam as follows:
21 22 23	a. Reclamation will determine average flow rates at Friant Dam, $\overline{\text{MIL}}_{\tau}$, and Gravelly Ford, $\overline{\text{GRF}}_{\tau}$ each day based on the average of the most recent three Millerton Daily Reports.
24 25 26 27 28	b. Beginning 7 days after the conclusion of the Flexible Flow Period (or Riparian Recruitment when applicable), Reclamation will evaluate the measured losses, L _m , daily by subtracting the average Friant release 4 days prior, t-4, from the 3-day average Gravelly Ford flow calculated on the current day.
29	$L_{m} = \overline{GRF}_{t} - \overline{MIL}_{t-4}$
30 31 32	c. Reclamation will determine a target loss, L _T , by subtracting the Friant Dam release in the Flow Schedule, MIL _T , from the Gravelly Ford flow target in the Flow Schedule, GRF _T .
33	$L_{T} = GRF_{T} - MIL_{T}$

1 2 3	d. Reclamation will determine the difference between target and measured losses between Friant Dam and Gravelly Ford, ΔL , by subtracting the measured loss from the target loss.
4	$\Delta L = L_{\rm T} - L_{\rm m}$
5 6 7	e. When the difference between the target and measured losses is greater than 10 cfs, Reclamation shall evaluate and adjust releases from Friant Dam.
8 9 10	f. Reclamation shall determine a controlling release from Friant Dam for flows at Gravelly Ford as the sum of the Gravelly Ford target and the average of the measured losses from previous four days.
11	$MIL_{GRF} = GRF_{T} + Average (L_{mt-1} + L_{mt-2} + L_{mt-3} + L_{mt-4})$
12 13 14	g. Reclamation shall adjust releases from Friant Dam to the larger of either the controlling release for flows at Gravelly Ford or the Friant Dam release target, but by no less than 15 cfs.
15 16 17	 For compliance during the Fall Pulse Flow periods as defined by Exhibit B, the flows shall be managed as follows with respect to complying with the Gravelly Ford flow target:
18 19 20 21	a. If flows are being increased to a release from Friant Dam which is not specified in Exhibit B, the corresponding Gravelly Ford flow requirement shall be determined by subtracting the assumed riparian release for that time period, as shown in Exhibit B;
22 23 24	b. The flows from Friant Dam shall be adjusted 5 days ahead of the Fall Pulse to meet the target flow at Gravelly Ford at the beginning of the Fall Pulse.
25 26 27	c. The flows from Friant Dam shall be adjusted considering the prevailing field losses to maintain the target flow at Gravelly Ford during the pulse period.
28 29 30	d. The flows from Friant Dam shall be adjusted to post pulse base flow starting from the 7 th day of the Fall Pulse to maintain the allocated flow volume during the pulse.
31 32 33	Any flow adjustment made pursuant to $A(2)$ or $B(4)$ of this section will be in addition to any scheduled change provided in $A(1)$ of this section. Further details are provided in Appendix F, Gravely Ford Compliance.

This page left blank intentionally.

Paragraph 13(j)(iii) – Recovered Water Account

3 Procedures for determining and accounting for reductions in water 4 deliveries to Friant Division long-term contractors caused by Interim 5 Flows and Restoration Flows Paragraph 16(b) 6 7 A Recovered Water Account (the "Account") and program to make water 8 available to all of the Friant Division long-term contractors who provide 9 water to meet Interim Flows or Restoration Flows for the purpose of 10 reducing or avoiding the impact of the Interim Flows and Restoration 11 Flows on such contractors. In implementing this Account, the Secretary 12 shall: 13 (1) Monitor and record reductions in water deliveries to Friant Division 14 long-term contractors occurring as a direct result of the Interim 15 Flows and Restoration Flows that have not been replaced by 16 recirculation, recapture, reuse, exchange or transfer of Interim 17 Flows and Restoration Flows or replaced or offset by other water 18 programs or projects undertaken or funded by the Secretary or other 19 Federal Agency or agency of the State of California specifically to 20 mitigate the water delivery impacts caused by the Interim Flows and 21 *Restoration Flows ("Reduction in Water Deliveries"). For purposes* 22 of this Account, water voluntarily sold to the Secretary either to 23 mitigate Unexpected Seepage Losses or to augment Base Flows by 24 any Friant Division long-term contractor shall not be considered a 25 Reduction in Water Delivery caused by this Settlement. The Account 26 shall establish a baseline condition as of the Effective Date of this 27 Settlement with respect to water deliveries for the purpose of 28 determining such reductions. The balance of any Friant Division 29 long-term contractor in the Account shall be annually adjusted in 30 accordance with the provisions of this Paragraph 16(b)(1) and of 31 Paragraph 16(b)(2). Each Friant Division long-term contractor's 32 account shall accrue one acre foot of water for each acre foot of 33 Reduction in Water Deliveries, In those years when, pursuant to 34 *Paragraphs 13(a) and 18, the Secretary, in consultation with the* 35 Restoration Administrator, determines to increase releases to 36 include some or all of the Buffer Flows, Friant Division long-term 37 contractors shall accrue into their account one and one quarter acre 38 foot of water for each acre foot of Reduction in Water Deliveries;

39

40 Reclamation will maintain a Recovered Water Account (RWA) and program to make

41 water available to all of the Friant Division long-term contractors who provide water to

- 1 meet Interim Flows and Restoration Flows, collectively hereinafter in this section
- 2 referred to as Restoration Flows, for the purpose of reducing or avoiding the impacts of
- 3 the Restoration Flows on such contractors.

4 **Determining Reduction in Water Deliveries**

To determine the reduction in water deliveries to Friant Division long-term contractors
caused by Restoration Flows, Reclamation will use an operational model to calculate
deliveries under a scenario with Restoration and a scenario without Restoration
(baseline). The baseline model determines the potential gross reduction in Friant-wide

9 water deliveries; to determine the net reduction in water deliveries for each contractor, a

10 series of "tests" or comparisons are done, which are detailed in Appendix H. Appendix H

11 describes the background and rationale for the selected methodology and a more detailed

12 step-by-step procedure for calculating the net reduction in water deliveries, summarized

13 below.

14	1.	Determine Friant-wide Impacts using the daily Water Use Curve model
15		(March through July period).
16	2.	Determine Friant-wide Impacts using late season spill calculations (August
17		through February period).
18	3.	Summation of Friant-wide impacts (March through February water year).
19	4.	Compare total Friant-wide water made available to Contractors with
20		Restoration (from Step 1 Item 7 and Step 2 Item 10 below) to Friant-wide
21		total contract quantity of 2.2 MAF.
22	5.	Compare Step 3 to Step 4 and use the lesser of the two as net Friant-wide
23		Impacts.
24	6.	Distribution of net Friant-wide Impacts from Step 5 to each individual
25		Contractor.
26	7.	Compare actual total water made available to each individual Contractor to
27		each Contractor's total contract amount.
28	8.	Compare Step 6 to Step 7 and use the lesser of the two as the net impact to
29		each individual Contractor.
20	TT1	his makes and he should be started in Mills start I also shows the dead we show a
30		ble water supply equals the storage in Millerton Lake above the dead pool plus
31		into Millerton Lake. The baseline calculation will first use available water
32		meet river releases. River releases under the without-Restoration condition will
33		iparian holding contract requirements using the Exhibit B critical-low schedule.
34		ases with Restoration will use the Restoration Flow Schedule (i.e. Restoration
35	Administr	ator recommendation accepted by Reclamation) at Friant Dam.
36	For water	deliveries to Friant Division long-term contractors (deliveries), the baseline

- 37 calculation incorporates a potential contractor water use curve composed of the daily
- 38 diversion rates shown in Table 4 as the maximum demand of the Friant Division long-
- 39 term contractors for Class 1 and Class 2 water supplies.

- 1 The baseline calculation will make deliveries from the remaining water supply after
- 2 meeting river releases. Deliveries equal the lesser of the remaining available water
- 3 supply, canal capacity, or the cumulative water use curve. Water supply in excess of
- 4 river releases and deliveries accumulates as potential storage and may "spill." The
- 5 baseline calculation limits the storage to Millerton Lake capacity.
- 6 7

Water Use Curve										
Month	Diversion Rate (cfs)	Monthly Volume (AF)	Percent Class 2 Contract							
March	1,593.8	98,000	7							
April	2,823.3	168,000	12							
May	3,643.0	224,000	16							
June	4,705.6	280,000	20							
July	4,553.8	280,000	20							

Table A

8 The contract supply equals deliveries plus storage up to a maximum of the full contract

9 amounts for Class 1 and Class 2, a total of approximately 2.2 million acre-feet (AF). The

10 baseline calculation method will determine the gross reduction in water deliveries to

11 Friant Division long-term contractors as the difference between contract supply with

12 Restoration Flows and contract supply without Restoration Flows.

13 Scheduled Restoration releases from Millerton Lake from August through February will

14 not count as a reduction in water deliveries to Friant Division long-term contractors on

15 days when actual releases are in excess of requirements to meet Restoration Flows as

16 determined by Reclamation, i.e. late-season flood releases.

17 The reduction in water deliveries Friant-wide and for each contractor are calculated after

18 a series of "tests" or comparisons are done as described in Appendix. This is the total

19 RWA balance.

20 Reclamation will increase RWA balances by 1 AF for each AF of Reduction in Water

21 Deliveries, except for Buffer Flows. Reclamation will increase the RWA balances by

1.25 AF for each AF of Buffer Flows that cause impacts as identified in Appendix H.

23 Reclamation will not increase RWA balances for scheduled releases of Buffer Flows

24 occurring when making releases for flood management in excess of the Restoration Flow

25 Schedule.

26 **Recirculation, Replacement or Offset Programs and Projects**

27 After the calculation of reduction in water deliveries, water recirculated to a contractor,

and then replacement or offset programs, will reduce the calculated net reduction in water

- 29 deliveries.
- 30 RWA balances will be decreased for programs and projects undertaken or funded by
- 31 Reclamation or other Federal agency or agency of the State of California specifically to
- 32 mitigate the water delivery impacts caused by Restoration Flows. Those programs and

- 1 projects are identified in Appendix G, including the amount of replacement or offset
- 2 resulting from implementation of the programs and projects.

Accounting for Reductions in Water Deliveries

4 Reclamation will maintain an accounting for each Friant Division long-term contractors 5 that will include: reductions in water deliveries, replacement or offset programs and 6 projects, RWA deliveries, and transfers. Reclamation will determine the Reductions in water deliveries annually. By March 31 of each year, Reclamation will provide the 7 Settling Parties with an accounting for the prior Restoration Year that will include 8 9 reductions in water deliveries, and RWA balances as of the last day of the prior Restoration Year. Reclamation will provide the Settling Parties with a monthly update of 10 the RWA balances that will account for applicable deliveries, transfers, and offset 11 12 programs and projects. RWA balances will not reflect future anticipated impacts.

13 Paragraph 16(b) Deliveries

14 Paragraph 16(b) Deliveries are subject to a determination by Reclamation that wet

15 hydrologic conditions exist and water is not needed for Restoration Flows as provided in

16 the Settlement, to meet Friant Division long-term Contractor obligations, or to meet other

17 contractual obligations of Reclamation existing on the Effective Date of the Settlement.

18 Paragraph 16(b) Deliveries shall be made available to the Friant Division long-term

19 contractors at the total cost of \$10.00 per AF, which amounts shall be deposited into the

20 Restoration Fund.

21 Paragraph 16(b) Deliveries shall be made available to all of the Friant Division long-term

22 Contractors who experience a reduction in water deliveries as a direct result of

23 Restoration Flows, as reflected in individual RWA balances. Eligibility to receive

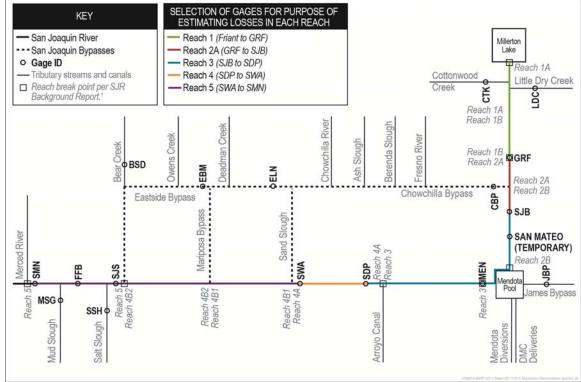
24 Paragraph 16(b) Deliveries will be determined based upon the annual update of RWA

25 Balances. Paragraph 16(b) Deliveries will have priority over 215 Water, but a lower

26 priority than Class 1 and Class 2 contract supplies. Friant Division long-term Contractors

27 may exchange, bank, or transfer Paragraph 16(b) Deliveries with other Friant and non-

- 28 Friant Division long-term Contractors.
- 29 Paragraph 16(b) Deliveries shall decrease the RWA balances of Friant Division long-
- 30 term Contractors. Paragraph 16(b) Deliveries made available and not diverted by
- 31 Friant Division long-term contractors do not decrease the RWA balances.


32 Transfers of RWA Balances

- 33 Only Friant Division long-term contractors may hold RWA accounts. Accordingly,
- transfers of RWA balances may only be among other Friant Division long-term
- 35 contractors, although Friant contractors may make Paragraph 16(b) Deliveries to non-
- 36 Friant contractors. Any Friant Division long-term contractor transferring its RWA
- 37 balance shall notify Reclamation in writing, as soon as practical.

Paragraph 13.(j)(iv) – Methodology for Monitoring Seepage Losses

Developing a methodology to determine whether seepage losses and/or downstream surface or underground diversions increase beyond current levels assumed in Exhibit B.

- 6 Reclamation will assess seepage losses and/or downstream surface or underground
- 7 diversions, including the reliability of the measuring station and the quality of the data, at
- 8 least once a year and report results in the SJRRP Monitoring and Analysis Plan. In
- 9 assessing seepage losses and/or downstream surface or underground diversions,
- 10 Reclamation will use final flow records or best available information for Reaches 2
- 11 through 5, as defined in the Settlement. The availability and reliability of gaging stations
- 12 were considered in determining segments of the San Joaquin River where seepage losses
- 13 and/or downstream surface or underground diversions would be evaluated in Reaches 2
- 14 through 5. Figure 6 provides the relative location of these gages to each other and the
- 15 reaches of the San Joaquin River.

16 17 18

19

3

4

San Joaquin River Restoration Study Background Report (McBain & Trush, Inc. [eds]), 2002) Figure 6. Gages and Reaches of the San Joaquin River in the SJRRP Restoration Area

Losses in Reach 1 are described and managed for under Paragraph 13(j)(ii) of these 1 2 Guidelines. For the purposes of this section, the determination of seepage losses and/or downstream surface or underground diversions for Reaches 2 through 5 will be measured 3 4 at gage locations, as identified below. Electronic links to the online data are provided in Appendix E (Reach Definitions and CDEC Gages) for each CDEC station. 5 6 • **Reach 2** – Gravelly Ford gage (GRF) to below the Chowchilla Bifurcation Structure (SJB) 7 • **Reach 3** – Below the Chowchilla Bifurcation Structure (SJB) to below Sack Dam 8 9 (SJD) 10 • **Reach 4** – Below Sack Dam (SJD) to the top of Reach 4B (SWA) 11 • **Reach 5** – Top of Reach 4B (SWA) to the confluence of the Merced River (SMN) The determination of seepage losses and/or downstream surface or underground 12 13 diversions will use the following time periods for assessment based on the hydrograph component: 14 15 **Fall Base and Spring-Run Incubation Flow** – October 1 through October 31 •

- Fall-Run Attraction Flow November 1 through November 10 (November 6 in critical years)
- Fall-Run Spawning and Incubation Flow November 11 (November 7 in critical years) through December 31
- Winter Base Flows January 1 through February 28 (February 29 in leap years)
- Spring Rise and Pulse Flows March 1 through April 30
- Summer Base Flows May 1 through August 31
- **Spring-Run Spawning Flows** September 1 through September 30

For each of the reaches and time periods, Reclamation will compute the cumulative volume entering and leaving the reach over the time period and compare it to the "current levels assumed in Exhibit B," as described in the following sections.

27 **Reach 2**

- 28 Exhibit B (Footnote 2 under Tables 1A through 1F) describes losses in Reach 2 as a
- 29 function of flows at the Gravely Ford gage station. Table 5 summarizes the relationships

30 between flow and loss in Exhibit B.

Reach 2 Losses in Exhibit B										
Flow at the Gravelly Ford Gage Station (cfs)	Anticipated Reach 2 Losses (cfs)									
<300	80									
300-400	90									
400-800	100									
>800	Figure 2-4 of the Background Report									

Table 5. Reach 2 Losses in Exhibit B

- 3 For flows greater than 800 cfs, Exhibit B footnotes reference Figure 2-4 of the *San*
- 4 Joaquin River Restoration Study Background Report (McBain & Trush Inc. [eds]), 2002),
- 5 provided below as Figure 7.

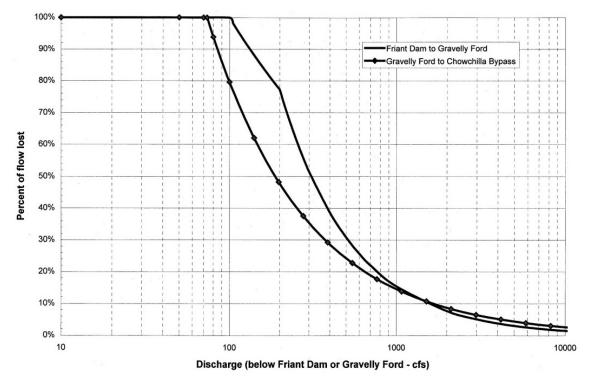


Figure 2-4. Estimated flow loss curves for the San Joaquin River between Friant Dam and Gravelly Ford, and between Gravelly Ford and the Chowchilla Bifurcation Structure.

6 7

- Figure 7.
 8 Relationship Between Flows at Gravelly Ford Gage Station and Losses in Reach 2
- 9 Exhibit B assumes no losses in Reach 2B between the Chowchilla Bypass Bifurcation
- 10 Structure and Mendota Pool.

11 Reach 3

- 12 Exhibit B assumes no incremental losses in Reach 3, and that Reach 3 may become a
- 13 gaining reach over time if the aquifer in Reach 2 becomes sufficiently recharged.

- 1 An operational loss has been assumed for Reach 3, in advance of the completion of the
- 2 Mendota Pool Bypass. This loss has been calculated to be 10 cfs downstream from the
- 3 Chowchilla Bifurcation Structure (SJB) gage station to San Mateo, with an additional
- 4 5-percent loss for Mendota Pool and Reach 3, pursuant to the agreement between
- 5 Reclamation and the San Luis Delta Mendota Canal Authority. Changes to losses in this
- 6 reach may result from future monitoring evaluations, or implementation of the Reach 2B
- 7 and Mendota Pool Bypass project.

8 Reach 4

- 9 Exhibit B assumes seasonal losses in Reach 4A and gains in Reach 4B, with a net gain in
- 10 Reach 4 flow. Future measured losses, including losses that may occur in the
- 11 Eastside Bypass, will be considered Unexpected Seepage Losses.

12 **Reach 5**

- 13 Exhibit B assumes net gains from Mud and Salt sloughs in Reach 5, with no net losses.
- 14 Reduction in measured gains from Mud and Salt sloughs below those assumed in
- 15 Exhibit B will not be considered an Unexpected Seepage Loss.

Paragraph 13(j)(v) – Unforeseen, Extraordinary Circumstances

- Procedures for making real-time changes to the actual releases from
 Friant Dam necessitated by unforeseen or extraordinary circumstances
- 5 Real-time changes to the actual releases from Friant Dam necessitated by unforeseen or
- 6 extraordinary circumstances consist of deviations from the scheduled release of
- 7 Restoration Flows or hydrograph-based flow schedules described in Exhibit B. For the
- 8 purposes of this section, unforeseen or extraordinary circumstances are unlikely,
- 9 pressing, and short-term in duration.
- 10 While emergency circumstances may necessitate real-time changes to the actual releases
- 11 from Friant Dam, the procedures for managing those emergencies are provided in
- 12 existing operational criteria and plans, and are beyond the provisions of this document.
- 13 Reclamation will evaluate circumstances identified by the Restoration Administrator to
- see if declaration of an emergency is justified. Under emergency circumstances,
- 15 Reclamation will communicate with the Settling Parties and Restoration Administrator
- 16 about changes in releases at Friant Dam as soon as possible at a time and in a manner that
- 17 does not interfere with responding to the emergency condition.
- 18 Reclamation or the Restoration Administrator may initiate the evaluation of
- 19 circumstances requiring real-time changes to the actual releases from Friant Dam.
- 20 Reclamation will determine whether a circumstance qualifies for real-time changes based
- 21 on an assessment of the following factors:

22 Factor 1 – Identification of Extraordinary or Unforeseen Circumstance

- 23 The Restoration Administrator may recommend real-time changes to the actual-releases
- 24 at Friant Dam at any time, consistent with provisions for flexibility provided in the
- 25 Settlement. The recommendation shall include, at a minimum, the desired flow changes
- and anticipated duration, a brief explanation of the extraordinary or unforeseen
- 27 circumstance, and the purpose and need for real-time changes. If approved, Reclamation
- 28 will coordinate the implementation of the recommendation with the
- 29 Restoration Administrator.
- 30 Circumstances requiring changes in releases at Friant Dam for the purpose of operating,
- 31 maintaining or repairing infrastructure that is not part of the Central Valley Project will
- 32 be managed using the procedures in this section.

Factor 2 – Duration has a Foreseeable End

- 34 The circumstances requiring real-time management shall have a foreseeable end. Long-
- term problems, persisting issues or maintenance activities that had been previously
- 36 unforeseen do not necessarily qualify for remedy through this provision.

- 1 Circumstances must appear to affect the release of Restoration Flows for a period longer
- 2 than 24-hours, or appear to jeopardize achievement of the Restoration Goal.

3 Factor 3 – Operational feasibility of real-time management

- 4 Reclamation will review requested real time management changes to verify the capability
- 5 of Central Valley Project and other facilities to accommodate the requested real-time
- 6 management, and to evaluate the likely consequences of changes to flow schedules, flows
- 7 in the Restoration Area, and water supplies resulting from the request.

8 Approval

- 9 Following the review of the previous factors, Reclamation will make a decision on
- 10 approval of the request for real-time management within 24 hours. Regardless of the
- 11 decision, Reclamation will provide written notifications of the decision to the appointed
- 12 representatives of the Settling Parties, the Restoration Administrator, and any other
- 13 parties that are anticipated to be affected.

14 **Commitment of Resources**

15 Management of real-time changes shall require a commitment of all necessary resources

16 of SJRRP, Settling Parties, and Restoration Administrator to address the circumstance

17 requiring the real-time changes until such a time that the circumstance has been resolved.

18 This commitment of resources is intended to bring resolution to the circumstances such

19 that releases can return to the latest approved flow schedule as soon as possible.

20 Transition Between Real-Time Management and Regular 21 Schedules

22 Real time management is limited to short term circumstances and will be transitioned

23 back to the latest approved flow schedule flows as soon as possible after the requiring

- 24 circumstances have been addressed. The transition will comply with all default
- 25 procedures at Friant Dam for release adjustment.

Paragraph 13(j)(vi) – Restoration Flows during Flood Releases

3 Procedures for determining the extent to which flood releases meet the
4 Restoration Flow hydrograph releases made in accordance with
5 Exhibit B.

6 Flood releases occur as the result of an unusually large water supply not otherwise

7 storable for Central Valley Project purposes, or infrequent and otherwise unmanaged

8 flood flows of short duration. In the event that Reclamation determines that it is

9 necessary to release water in excess of the Restoration Flow schedule for the purposes of

10 flood management, the daily quantities of flow determined to meet the Restoration Flow

11 hydrograph shall equal the daily volumes of flow provided in the most recent and adopted

12 Restoration Flow Schedule.

13 Releases of riparian recruitment flows shall occur within 90 days following the peak

14 Flushing Flow release, as identified in the Restoration Flow schedule. Riparian

15 recruitment flows may be re-scheduled by the Restoration Administrator within the 90

16 day period; however, the Restoration Administrator will be limited to the total volume of

17 riparian recruitment flows allocated for the year, less the volume of riparian recruitment

18 flows that has already been scheduled and released for the year.

19 During years when Riparian Recruitment flows may be available, Reclamation shall meet 20 as soon as practical with the other Settling Parties, Implementing Agencies, and 21 Restoration Administrator to discuss operating conditions and objectives at Friant Dam and in the San Joaquin River for achieving riparian recruitment needs. Thereafter, the 22 23 Restoration Administrator shall be responsible for determining the need and schedule for 24 subsequent workgroups or meetings based on then-current hydrologic, operational, and 25 ecological conditions. Reclamation, to the extent practical, shall keep the Restoration 26 Administrator updated on changes in conditions related to flood control, and participate 27 in subsequent workgroups and meetings as requested by the Restoration Administrator. 28 Subject to the procedures in Paragraph 13(j)(i) of these Guidelines, the Restoration 29 Administrator may update the Riparian Recruitment schedule as needed to ensure that the 30 riparian recruitment can be achieved with any remaining available volumes, and within

31 the 90-day time period.

This page left blank intentionally.

Revision Process

- 2 At any time, the Settling Parties, Implementing Agencies, and/or Restoration
- 3 Administrator may suggest amendments and/or supplements to these Guidelines by
- 4 notifying the other parties in writing of the suggested revision, including all supporting
- 5 documentation. Within 30 days of receiving suggested amendments and/or supplements,
- 6 Reclamation shall evaluate all suggested revisions and provide a written response to the
- 7 parties as to whether the suggested revision is: Accepted; Under Review; or, Not
- 8 Accepted.
- 9 "Accepted" revisions shall be evaluated by Reclamation as to whether they are a
- 10 substantive or non-substantive revision to these Guidelines. Any substantive revision
- 11 shall only be made after consultation by Reclamation with the Settling Parties and
- 12 Restoration Administrator. Non-substantive revisions shall be made by Reclamation
- 13 without consultation with the Settling Parties and Restoration Administrator.
- 14 "Under Review" revisions are those that are likely to result in a revision to these
- 15 Guidelines but require additional information. Reclamation shall notify the Settling
- 16 Parties and Restoration Administrator whenever a suggested revision is "Under Review"
- 17 and the additional information required from the requesting party. Upon the requesting
- 18 party providing the additional information, Reclamation shall consult with the Settling
- 19 Parties and Restoration Administrator on the suggested revision.
- 20 "Not Accepted" revisions shall include a written explanation by Reclamation to the
- 21 Settling Parties and Restoration Administrator as to the basis for not including the
- 22 suggested revision into these Guidelines.
- Any revised Guidelines shall be published on the SJRRP website and provided to the
- 24 Settling Parties and Restoration Administrator as soon as practical. Unless otherwise
- 25 provided, the revised Guidelines shall take effect immediately upon publication on the
- 26 SJRRP website.
- 27

2

This page left blank intentionally.

1 References

Buchanan, T.J., and Somers, W.P., 1969, Discharge measurements at gaging stations:
U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3,
Chap A8, 65 p.
McBain and Trush (eds). 2002. San Joaquin River Restoration Study Background Report.
Prepared for Friant Water Users Authority, Lindsay, California, and Natural
Resources Defense Council, San Francisco, California.
U.S. Department of the Interior, Bureau of Reclamation (Reclamation). 2012. San
Joaquin River Restoration Program Final Program Environmental Impact
Statement/Impact Report.

This page left blank intentionally.

- DRAFT
- 2 **Restoration Flows Guidelines**
- **3** Appendix A Facilities of the Friant
- **Division, Central Valley Project**

Appendix A – Facilities of the Friant Division, Central Valley Project

This Appendix lists the facilities of the Friant Division, CVP that are relevant toParagraph 13(e) of the Settlement:

- 5 Friant Dam
- 6 Friant-Kern Canal
- 7 Madera Canal
- 8 Appurtenant facilities owned by Reclamation

2

This page left blank intentionally.

DRAFT

Restoration Flows Guidelines

- **3** Appendix B Restoration Annual
- **4 Allocation Lookup Tables**

This page left blank intentionally.

Appendix B– Restoration Annual Allocation Lookup Tables

3 Table B-1 provides look-up values for Restoration Annual Allocation in TAF per each 10

4 TAF increment of forecasted annual flow on the San Joaquin River. For reference, the

5 Exhibit B Restoration Year Types are noted to the left of each increment of forecast.

 Table B-1. Friant Dam Default Restoration Flow Schedule, Spring Forecasting Period 										
7 F Restoration Year Type	Unimpaired Water Year Runoff (TAF)	SJRRP Annual Allocation at Friant Dam (TA)	SJRRP Annual Allocation at Gravelly Ford (TAF)	Restoration Year Type	Unimpaired Water Year Runoff (TAF)	SJRRP Annual Allocation at Friant Dam (TA)	OC SJRRP Annual Allocation at Gravelly Ford (TAF)			
Critical-Low	Up to 400	116.85	3.62		930	330.3	217.07			
Critical-High	400 up to 670	187.79	74.56		940	331.63	218.40			
	670	272.28	159.05		950	332.98	219.75			
	680	274.55	161.32		960	334.33	221.10			
	690	276.78	163.55		970	335.67	222.44			
	700	279.01	165.78		980	337.02	223.79			
	710	281.24	168.01		990	338.36	225.13			
	720	283.47	170.24		1000	339.71	226.48			
	730	285.71	172.48		1010	341.06	227.83			
	740	287.94	174.71		1020	342.4	229.17			
	750	290.17	176.94		1030	343.75	230.52			
	760	292.4	179.17		1040	345.09	231.86			
	770	294.63	181.40		1050	346.44	233.21			
	780	296.87	183.64	Normal-Dry	1060	347.79	234.56			
Des	790	299.1	185.87		1070	349.13	235.90			
Dry	800	301.33	188.10		1080	350.48	237.25			
	810	303.56	190.33		1090	351.82	238.59			
	820	305.79	192.56		1100	353.17	239.94			
	830	308.03	194.80		1110	354.52	241.29			
	840	310.26	197.03		1120	355.86	242.63			
	850	312.49	199.26		1130	357.21	243.98			
	860	314.72	201.49		1140	358.55	245.32			
	870	316.95	203.72		1150	359.9	246.67			
	880	319.19	205.96		1160	361.25	248.02			
	890	321.42	208.19		1170	362.59	249.36			
	900	323.65	210.42		1180	363.94	250.71			
	910	325.88	212.65		1190	365.28	252.05			
	920	328.11	214.88		1200	366.63	253.40			

Friant Dam Default Restoration Flow Schedule, Spring Forecasting Period (contd.)										
Restoration Year Type	Unimpaired Water Year Runoff (TAF)	SJRRP Annual Allocation at Friant	SJRRP Annual Allocation at Gravelly	Restoration Year Type	Unimpaired Water Year Runoff (TAF)	SJRRP Annual Allocation at Friant	SJRRP Annual Allocation at Gravelly			
	1210	Dam (TA) 367.98	Ford (TAF) 254.75		1720	Dam (TA) 438.13	Ford (TAF) 324.90			
	1210	369.32	256.09		1720	439.53	326.30			
	1220	370.67	257.44		1730	439.53	327.70			
	1240	372.01	258.78		1750	442.34	329.11			
	1250	373.36	260.13		1760	443.74	330.51			
	1260	374.71	261.48		1770	445.14	331.91			
	1270	376.05	262.82		1780	446.54	333.31			
	1280	377.4	264.17		1790	447.94	334.71			
	1290	378.74	265.51		1800	449.34	336.11			
	1300	380.09	266.86		1810	450.74	337.51			
Normal-Dry	1310	381.44	268.21		1820	452.14	338.91			
	1320	382.78	269.55		1830	453.54	340.31			
	1330	384.13	270.90		1840	454.94	341.71			
	1340	385.47	272.24		1850	456.35	343.12			
	1350	386.82	273.59		1860	457.75	344.52			
	1360	388.17	274.94		1870	459.15	345.92			
	1370	389.51	276.28		1880	460.55	347.32			
	1380	390.86	277.63		1890	461.95	348.72			
	1390	392.2	278.97		1900	463.35	350.12			
	1400	393.55	280.32		1910	464.75	351.52			
	1410	394.9	281.67		1920	466.15	352.92			
	1420	396.24	283.01		1930	467.55	354.32			
	1430	397.59	284.36		1940	468.95	355.72			
	1440	398.93	285.70		1950	470.36	357.13			
	1450	400.3	287.07	Normal-Wet	1960	471.76	358.53			
	1460	401.71	288.48	(contd.)	1970	473.16	359.93			
	1470	403.11	289.88	(contai)	1980	474.56	361.33			
	1480	404.51	291.28		1990	475.96	362.73			
	1490	405.91	292.68		2000	477.36	364.13			
	1500	407.31	294.08		2010	478.76	365.53			
	1510	408.71	295.48		2020	480.16	366.93			
	1520	410.11	296.88		2030	481.56	368.33			
	1530	411.51	298.28		2040	482.96	369.73			
	1540	412.91	299.68		2050	484.37	371.14			
	1550	414.32	301.09		2060	485.77	372.54			
	1560 1570	415.72	302.49 303.89		2070 2080	487.17 488.57	373.94			
Normal-Wet	1570	417.12 418.52	305.29		2080	489.97	375.34 376.74			
Normal-wet	1580	418.52	306.69		2090	409.97	378.14			
	1600	419.92	308.09		2100	491.37	379.54			
	1610	422.72	309.49		2120	494.17	380.94			
	1620	424.12	310.89		2130	495.57	382.34			
	1630	425.52	312.29		2140	496.97	383.74			
	1640	426.92	313.69		2150	498.38	385.15			
	1650	428.33	315.10		2160	499.78	386.55			
	1660	429.73	316.50		2170	501.18	387.95			
	1670	431.13	317.90		2180	502.58	389.35			
	1680	432.53	319.30		2190	503.98	390.75			
	1690	433.93	320.70	{ }	2200	505.38	392.15			
	1700	435.33	322.10		2210	506.78	393.55			
	1710	436.73	323.50		2220	508.18	394.95			

1 Table B-1. 2 Friant Dam Default Restoration Flow Schedule. Spring Forecasting Period (contd.)

Table B-1. Friant Dam Default Restoration Flow Schedule, Spring Forecasting Period (contd.) 2

Restoration Year Type	Unimpaired Water Year Runoff (TAF)	SJRRP Annual Allocation at Friant Dam (TAF)	SJRRP Annual Allocation at Gravelly Ford (TAF)
	2230	509.57	396.34
	2240	510.98	397.75
	2250	512.38	399.15
	2260	513.78	400.55
	2270	515.18	401.95
	2280	516.58	403.35
	2290	517.98	404.75
	2300	519.38	406.15
	2310	520.78	407.55
	2320	522.18	408.95
	2330	523.58	410.35
	2340	524.99	411.76
	2350	526.39	413.16
Normal-Wet	2360	527.79	414.56
(Cont'd)	2370	529.19	415.96
	2380	530.59	417.36
	2390	531.99	418.76
	2400	533.39	420.16
	2410	534.79	421.56
	2420	536.19	422.96
	2430	537.59	424.36
	2440	538.99	425.76
	2450	540.4	427.17
	2460	541.8	428.57
	2470	543.2	429.97
	2480	544.6	431.37
	2490	546	432.77
	2500	547.44	434.21
Wet	Above 2500	673.49	560.26

This page left blank intentionally.

- DRAFT
- 2 **Restoration Flows Guidelines**
- **3** Appendix C Default Flow Schedules

This page left blank intentionally.

Appendix C– Default Flow Schedules

2 Tables C-1 through C-8 provide lookup values to identify the Default Flow Schedule

3 based on the remaining volume of allocated water available to distribute over the

4 remaining months of the Restoration Year. These tables in this appendix were developed

5 using the 'gamma' transformation pathway, described in the PEIS/R. The four

6 transformation pathways differ in their treatment of Restoration Annual Allocations that

7 fall between the Exhibit B flow schedules for Critical-High and Dry Restoration Year

8 Types. For reference, each of the four transformation pathways covered by the PEIS/R is

- 9 presented in Figures C-1 through C-4.
- 10 To use the lookup tables, select the column corresponding to the desired date for creating
- 11 a Default Flow Schedule. Subtract the water released to date (provided in the Restoration
- 12 Administrator's budget) from the annual allocation to determine the remaining
- 13 Restoration Annual Allocation volume. In the event that the remaining allocation is not

14 equal to one of the listed volumes, but instead falls between two listed values; the Default

15 Flow Schedule will be determined by linear-interpolation of the two bordering schedules.

16 The first table in each series covers the Spring Period. At the end of the Spring Period,

17 the relationship of the remaining allocation volume and flow schedule is fixed and

18 addressed by the second table. Flow released in February above Exhibit B values will be

19 debited against the Restoration Annual Allocation made for the following Restoration

20 Year.

21 The Default Flow Schedules at the confluence of the San Joaquin and Merced rivers

- 22 reflect Settlement assumptions about the reduction in flow due to riparian deliveries,
- 23 seepage losses in Reach 2, and inflows from Salt and Mud sloughs.
- 24

 Table C-1.

 Friant Dam Default Restoration Flow Schedule, Spring Forecasting Period

Date	March	1-15	March ²	16-31	April 1	I-15	April 1	6-30	May 1	-31	June '	1-30	July 1	-31
Year Type	Remaining Allocation (AF)	Default Release (ft ³ /s)	Remaining Allocation (AF)	Default Release (ft³/s)	Remaining Allocation (AF)	Default Release (ft³/s)	Remaining Allocation (AF)	Default Release (ft ³ /s)						
wet	673,488	500	658,612	1,500	611,009	2,500	536,628	4,000	417,620	2,000	294,645	2,000	175,637	350
normal wet	473,851	500	458,975	1,500	411,372	2,500	336,991	4,000	217,983	350	196,463	350	175,636	350
normal dry	365,256	500	350,380	1,500	302,777	2,500	228,396	350	217,983	350	196,463	350	175,636	350
dry	301,289	500	286,413	1,500	238,810	350	228,396	350	217,983	350	196,463	350	175,636	350
=	284,955	500	270,079	1,500	222,476	350	212,062	350	201,649	215	188,429	215	175,636	350
sitional	266,926	500	252,050	1,500	204,447	350	194,033	350	183,620	215	170,400	215	157,607	255
sitic	258,000	500	243,124	1,500	195,521	200	189,570	200	183,620	215	170,400	215	157,607	255
tran:	226,760	500	211,884	1,500	164,281	200	158,330	200	152,380	215	139,160	215	126,367	255
t	209,207	500	194,331	1,500	146,728	200	140,777	200	134,827	215	121,607	215	108,814	255
critical high	187,785	500	172,909	1,500	125,306	200	119,355	200	113,405	215	100,185	215	87,392	255
critical low	116,866	130	112,998	130	108,873	150	104,410	150	99,947	190	88,264	190	76,959	230

3

4

5

Table C-2.

Friant Dam Default Restoration Flow Schedule, August Through February								
Date		Aug 1-31	Sep 1-30	Oct 1-31	Nov 1-6	Nov 7-10	Nov 11 - Dec 31	Jan 1 - Feb
Year Type	Remaining Allocation (AF)	Default Release (ft³/s)						
wet	154,116	350	350	350	700	700	350	350
normal wet normal dry		350 350	350 350	350 350	700 700	700 700	350 350	350 350
dry		350	350	350	700	700	350	350
	154,115	350	350	350	700	700	350	350
transitional	141,928	255	350	350	400	350	350	350
	141,927	255	350	350	400	350	350	350
	110,687	255	260	260	400	260	260	260
t	93,134	255	260	260	400	260	260	110
critical high	,	255	260	160	400	120	120	110
critical low	62,816	230	210	160	130	120	120	100

6 7

7 Note: the Default Flow Schedules below Friant Dam reflect riparian release requirements

8 and Restoration Flows.

G	ravelly	y ⊢or	α εχρ	ected	1 Rest	orati	on Fio	ws, a	spring	Fore	ecastin	ig Pe	rioa	
Date	March	1-15	March ?	16-31	April 1	I-15	April 1	6-30	May 1	-31	June 1	1-30	July 1	-31
Year Type	Remaining Allocation (AF)	Default Release (ft ³ /s)												
wet	673,488	375	662,331	1,375		2,355	548,628	3,855	433,934	1,815	322,334	1,815	214,334	125
normal wet normal dry		375 375	462,694 354,099	1,375 1,375	'	2,355 2,355	348,991 240,396	3,855 205	234,297 234,297	165 165	224,152 224,152	165 165	214,334 214,334	125 125
dry	,	375	290,132	1,375	-	205	240,396	205	234,297	165	224,152	165	214,334	125
	284,955	375	273,798	1,375	230,162	205	224,062	205	217,963	30	216,119	30	214,334	125
sitional	266,926	375	255,769	1,375	212,133	205	206,033	205	199,934	30	198,090	30	196,305	30
siti	258,000	375	246,843	1,375	203,207	55	201,570	55	199,934	30	198,089	30	196,304	30
tran	226,760	375	215,603	1,375	171,967	55	170,330	55	168,694	30	166,849	30	165,064	30
t	209,207	375	198,050	1,375	154,414	55	152,777	55	151,141	30	149,296	30	147,511	30

187,785

116,866

375

5

176,628 1,375

5

116,717

critical high

critical low

4 5

Table C-4.

131,355

116,410

55

5

129,719

116,261

30

5

127,874

115,954

30

5

126,089

115,656

30

5

Gravelly Ford Default Restoration Flow	w Schedule, June Through February
--	-----------------------------------

55

5

								<u> </u>
Date		Aug 1-31	Sep 1-30	Oct 1-31	Nov 1-6	Nov 7-10	Nov 11 - Dec 31	Jan 1 - Feb
Year Type	Remaining Allocation (AF)	Default Release (ft ³ /s)	Default Release (ft³/s)	Default Release (ft³/s)	Default Release (ft ³ /s)			
wet normal wet normal dry dry	206,648 206,648	125 125 125 125	145 145 145 145	195 195 195 195	575 575 575 575 575	575 575 575 575 575	235 235 235 235 235	255 255 255 255 255
transitional	206,648 194,460 194,460 163,220 145,667	125 30 30 30 30	145 145 145 55 55	195 195 195 105 105	575 275 275 275 275 275	585 235 235 145 145	235 235 235 145 145	255 255 255 165 15
critical high critical low		30 5	55 5	5 5	275 5	5 5	5 5	15 5

6 7

9

Note: the Default Flow Schedules at the Gravely Ford reflect Settlement assumptions

about the reduction in flow due to riparian deliveries. 8

2

1

Table C-3. Gravelly Ford Expected Restoration Flows, Spring Forecasting Period

132,992

116,559

Table C-5. 2 Chowchilla Bifurcation, Sack Dam, and Reach 4B Headgate Expected Restoration 3 Flows, Spring Forecasting Period

Date	March	1-15	March '	16-31	April 1	1-15	April 1	6-30	May 1	-31	June '	1-30	July 1	-31
Year Type	Remaining Allocation (AF)	Default Release (ft³/s)	Remaining Allocation (AF)	Default Release (ft³/s)	Remaining Allocation (AF)	Default Release (ft ³ /s)	Remaining Allocation (AF)	Default Release (ft³/s)	Remaining Allocation (AF)	Default Release (ft ³ /s)	Remaining Allocation (AF)	Default Release (ft³/s)	Remaining Allocation (AF)	Default Release (ft ³ /s)
we	673,488	285	665,009	1,225	626,133	2,180	561,273	3,655	452,529	1,650	351,075	1,650	252,893	45
normal we	473,851	285	465,372	1,225	426,496	2,180	361,636	3,655	252,892	85	247,666	85	242,608	45
normal dry	365,256	285	356,777	1,225	317,901	2,180	253,041	125	249,322	85	244,096	85	239,038	45
dry	301,289	285	292,810	1,225	253,934	125	250,215	125	246,496	85	241,269	85	236,211	45
	284,955	285	276,476	1,225	237,600	125	233,881	125	230,162	0	230,162	0	230,162	45
transitional	266,926	285	258,447	1,225	219,571	125	215,852	125	212,133	0	212,133	0	212,133	0
sitic	258,000	285	249,521	1,225	210,645	0	210,645	0	210,645	0	210,645	0	210,645	0
an	226,760	285	218,281	1,225	179,405	0	179,405	0	179,405	0	179,405	0	179,405	0
а —	209,207	285	200,728	1,225	161,852	0	161,852	0	161,852	0	161,852	0	161,852	0
critical high critical low		285 0	179,306 116,866	1,225 0	140,430 116,866	0 0	140,430 116,866	0 0	140,430 116,866	0 0	140,430 116,866	0 0	140,430 116,866	0 0

4

5

6

7

Table C-6. Chowchilla Bifurcation, at Sack Dam, and the Reach 4B Headgate Default Restoration Flow Schedule, June Through February

	Nesi	oration		Scheut	ile, Julie I	niouyn F	ebiuaiy	
Date		Aug 1-31	Sep 1-30	Oct 1-31	Nov 1-6	Nov 7-10	Nov 11 - Dec 31	Jan 1 - Feb
Year Type	Remaining Allocation (AF)	Default Release (ft ³ /s)	Default Release (ft ³ /s)	Default Release (ft³/s)	Default Release (ft ³ /s)	Default Release (ft³/s)	Default Release (ft ³ /s)	Default Release (ft ³ /s)
wet normal wet normal dry	239,841 236,271	45 45 45	65 65 65	115 115 115	475 475 475	475 475 475	155 155 155	175 175 175
transitional	233,444 227,395 212,133 210,645	45 45 0 0	65 65 65 65	115 115 115 115 115	475 475 175 175	475 485 135 135	155 155 155 155	175 175 175 175
critical high	179,405 161,852 140,430	0 0 0	0 0 0	25 25 0	175 175 175	45 45 0	65 65 0	85 0 0
critical low		0	0	0	0	0	0	0

8

9 Note: the Default Flow Schedules below the Chowchilla Bifurcation, below Sack Dam,

10 and at the head of Reach 4B reflect Settlement assumptions about the reduction in flow

due to riparian deliveries and seepage losses in Reach 2. 11

3

 Table C-7.

 Merced River Confluence Default Restoration Flow Schedule, Spring Forecast

 Period

						Г	enoa							
Date	March	1-15	March ?	16-31	April 1	-15	April 1	6-30	May 1	-31	June '	I-30	July 1	-31
Year Type	Remaining Allocation (AF)	Default Release (ft ³ /s)	Remaining Allocation (AF)	Default Release (ft ³ /s)	Remaining Allocation (AF)	Default Release (ft ³ /s)	Remaining Allocation (AF)	Default Release (ft ³ /s)	Remaining Allocation (AF)	Default Release (ft ³ /s)	Remaining Allocation (AF)	Default Release (ft ³ /s)	Remaining Allocation (AF)	Default Release (ft ³ /s)
wet	673,488	785	650,133	1,700	596,182	2,580	519,422	4,055	398,777	2,050	272,728	2,050	150,744	320
normal wet normal dry dry	365,256	785 785 785	450,496 341,901 277,934	1,700 1,700 1,700	396,545 287,950 223,983	2,580 2,580 525	319,785 211,190 208,363	4,055 525 525	199,140 195,570 192,744	485 485 485	169,319 165,749 162,922	485 485 485	140,459 136,889 134,063	320 320 320
transitional	284,955 266,926 258,000 226,760 209,207	785 785 785 785 785 785	261,600 243,571 234,645 203,405 185,852	1,700 1,700 1,700 1,700 1,700	207,649 189,620 180,694 149,454 131,901	525 525 400 400 400	192,029 174,000 168,793 137,553 120,000	525 525 400 400 400	176,410 158,381 156,893 125,653 108,100	400 400 400 400 400	151,815 133,786 132,298 101,058 83,505	400 400 400 400 400	128,013 109,984 108,496 77,256 59,703	320 275 275 275 275 275
critical high critical low		785 500	164,430 101,990	1,700 475	110,479 86,916	400 400	98,578 75,015	400 400	86,678 63,114	400 400	62,083 38,519	400 400	38,281 14,717	275 275

4

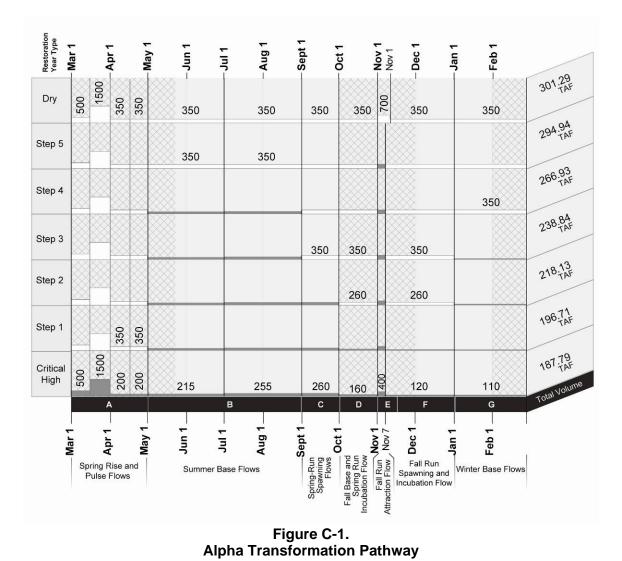
5

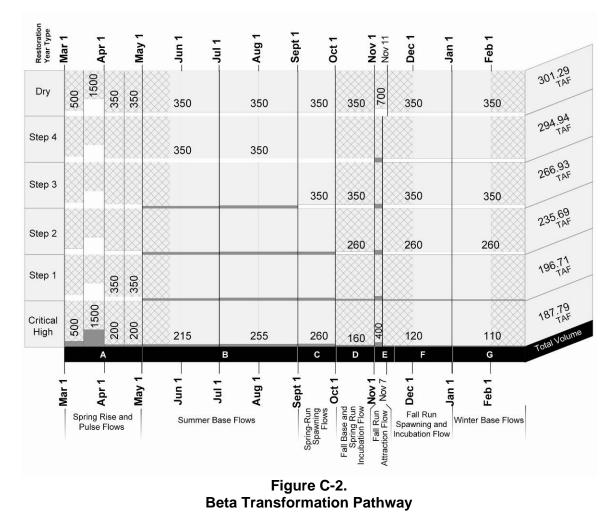
6 7

Table C-8. Merced River Confluence Default Restoration Flow Schedule, June Through

February

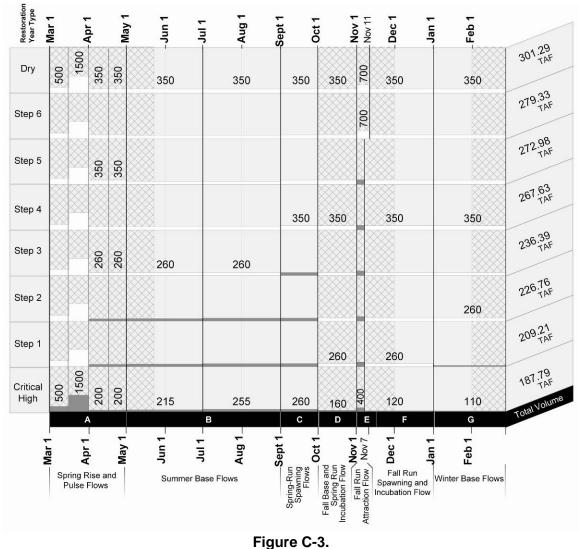
					ruary			
Dat	е	Aug 1-31	Sep 1-30	Oct 1-31	Nov 1-6	Nov 7-10	Nov 11 - Dec 31	Jan 1 - Feb
Year Type	Remaining Allocation (AF)	Default Release (ft ³ /s)	Default Release (ft³/s)	Default Release (ft³/s)	Default Release (ft ³ /s)			
we	et 131,068	320	340	415	775	775	555	675
normal we normal dr dr	y 117,213	320 320 320	340 340 340	415 415 415	775 775 775	775 775 775	555 555 555	675 675 675
transitional	108,337 93,075 91,587 60,347 42,794	320 275 275 275 275 275	340 340 340 275 275	415 415 415 325 325	775 475 475 475 475 475	785 535 535 445 445	555 555 555 465 465	675 675 675 585 500
critical hig critical lov		275 275	275 275	300 300	475 300	400 400	400 400	500 500

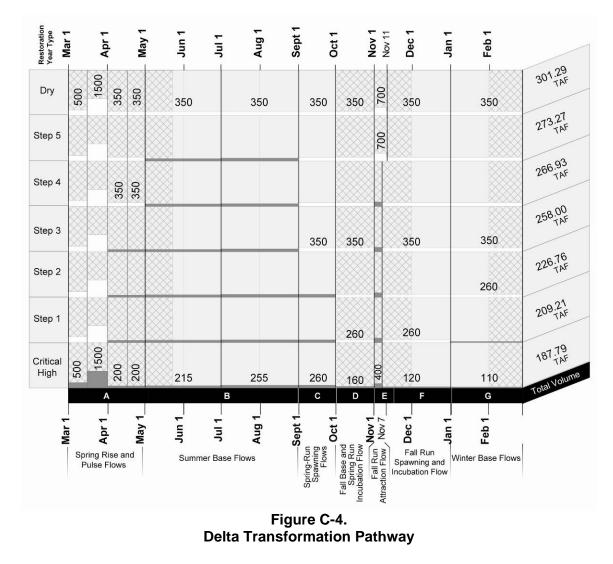

8


9	Note: the Default Flow	Schedules below the	Chowchilla Bifurcation,	below Sack Dam,
---	------------------------	---------------------	-------------------------	-----------------

10 and at the head of Reach 4B, and at the Merced River Confluence reflect Settlement

11 assumptions about the reduction in flow due to riparian deliveries and seepage losses in


12 Reaches 2 and 4, and inflows from Mud and Salt sloughs.


1 2 3

San Joaquin River Restoration Program

Gamma Transformation Pathway

1 2 3

This page left blank intentionally.

- DRAFT
- 2 **Restoration Flows Guidelines**
- Appendix D Exhibit B of the
 Settlement

This page left blank intentionally.

Appendix D – Exhibit B of the Settlement

- 2 The following pages contain Exhibit B of the Stipulation of Settlement in *NRDC, et al. v.*
- 3 *Kirk Rodgers, et al.*, as it appears.

This page left blank intentionally.

Case 2:88-ev-01658-LKK-GGH Document 1341-1 Filed 09/13/2006 Page 54 of 80 STIPULATION OF SETTLEMENT <u>NRDC v. RODGERS</u> EXHIBIT 8 [Restoration llydrographs]

Case 2:88-cv-01658-LKK-GGH Document 1341-1 Filed 09/13/2006 Page 55 of 80

This Exhibit B sets forth the hydrographs which constitute the "Base Flows" referenced in paragraph 13 of the Stipulation of Settlement. For purposes of implementing the hydrographs, the following provisions shall apply:

1. Buffer Flows.

Paragraph 13 of the Stipulation of Settlement provides for the Base Flows to be augmented by Buffer Flows of up to 10% of the applicable hydrograph included in this Exhibit B. Except as provided in Paragraph 4 of this Exhibit B, such Buffer Flows are intended to augment the daily flows specified in the applicable hydrograph. For purposes of this Exhibit, Base Flows and Buffer Flows shall collectively be referred to as Restoration Flows.

2. Water Year Types.

The Base Flows are presented in Tables 1A-IF as a set of six hydrographs that vary in shape and volume according to wetness in the basin. The six year types are described as "Critical Low", "Critical High", "Dry", "Normal-Dry", "Normal-Wet", and "Wet." The total annual unimpaired runoff at Friant for the water year (October through September) is the index by which the water year type is determined. In order of descending wetness, the wettest 20 percent of the years are classified as Wet, the next 30 percent of the years are classified as Normal-Wet, the next 30 percent of the years are classified as Normal-Dry, the next 15 percent of the years are classified as Dry, and the remaining 5 percent of the years are classified as Critical (represented by the "Critical High" hydrograph). A subset of the Critical years, those with less than 400 TAF of unimpaired runoff, are identified for use of the "Critical Low" hydrograph. The hydrographs, Tables 1A-1F, depict an annual quantity of water based upon the flow schedules identified. Components of the hydrograph are plotted for each water-year type, with various types of flows (Fall Base and Spring Run Incubation Flow; Fall Run attraction Flow; Fall-Run Spawning and Incubation Flow; Winter Base Flows; Spring Rise and Pulse Flows; Summer Base Flows; Spring-Run Spawning Flows) in specified amounts throughout the year, some of which vary in amount and duration depending upon year type classification. To avoid a moving distribution of year-type assignment, water years 1922-2004 will be used to establish year types.

3. Continuous Line Hydrographs.

The Parties agree to transform the stair step hydrographs to more continuous hydrographs prior to December 31, 2008 to ensure completion before the initiation of Restoration Flows, provided that the Parties shall mutually-agree that transforming the hydrographs will not materially impact the Restoration or Water Management Goal.

4. Elexibility in Timing of Releases.

(a) In order to achieve the Restoration Goal and to avoid material adverse impacts on existing fisheries downstream of Friant Dam, the Parties agree to the following provisions to provide certain flexibility in administration of the hydrographs and Buffer Flows.

(b) The distribution of Base Flow releases depicted in each hydrograph is intended to allow flexibility in any given year for the Restoration Administrator, in consultation with the

Page 1

Case 2:88-cv-01658-LKK-GGH Document 1341-1 Filed 09/13/2006 Page 56 of 80 П

Technical Advisory Committee, to recommend to the Secretary appropriate ramping rates and precise flow amounts on specific dates as provided for in this subparagraph and consistent with the flow measurement and monitoring provisions of the Settlement. Base Flow releases allocated during the period from March 1 through May 1 (the "Spring Period") in any year may be shifted up to four weeks earlier and later than what is depicted in the hydrograph for that year, and managed flexibly within that range (i.e. February 1 through May 28), so long as the total volume of Base Flows allocated for the Spring Period is not changed. The Base Flows depicted in each hydrograph from October 1 through November 30 (the "Fall Period") likewise are intended to allow flexibility in any given year for the Restoration Administrator, in consultation with the Technical Advisory Committee, to recommend to the Secretary precise flow anto acids on specific dates, and may be shifted up to four weeks earlier or later so long as the total volume of Base Flows allocated during that Period of the year is not changed.

(c) The process for determining and implementing Buffer Flows is set out in Paragraphs 13 and 18 of the Settlement, as implemented by this Exhibit B. The Restoration Administrator, in consultation with the Technical Advisory Committee, may recommend to the Secretary that the daily releases provided for in the hydrographs, or as modified pursuant to Paragraph 4(b) above, be augmented by application of the Buffer Flows up to 10% of the daily flows. From October 1 through December 31, the Buffer Flows shall be defined as 10% of the total volume of Base Flows during that period, and may be managed llexibly as a block of water during the Fall Period and four weeks earlier or later, as provided in Paragraph 4(b) above. Up to 50% of the Buffer Flows available from May 1 to September 30 not to exceed 5,000 acre feet may be moved to augment flows during the Spring or the Fall Periods.

(d) The Restoration Administrator may recommend additional changes in specific release schedules within an applicable hydrograph (beyond those described in subparagraphs (b) and (c) above) to the extent consistent with achieving the Restoration Goal without changing the total amount of water otherwise required to be released pursuant to the applicable hydrograph or materially increasing the water delivery reductions to any Friant Division long-term contractors.

5. Flushing Flows.

In Normal-Wet and Wet years, the stair-step hydrographs, Exhibits 1A-1F, include a block of water averaging 4,000 efs from April 16-30 to perform several functions, including but not limited to geomorphic functions such as flushing spawning gravels ("The Flushing Flows"). Therefore, unless the Secretary, in consultation with the Restoration Administrator, determines that Flushing Flows are not needed, hydrographs in Normal-Wet and Wet years will also include Flushing Flows during that period. Working within the constraints of the flood control system, the Restoration Flow releases from Friant Dam to provide these Flushing Flows shall include a peak release as close to 8,000 efs as possible for several hours and then recede at an appropriate rate. The precise timing and magnitude of the Flushing Flows shall be based on monitoring of meteorological conditions, channel conveyance capacity, salmonid distribution, and other physical/ecological factors with the primary goal to utobilize spawning gravels, maintain their looveness and flush fine sediments, so long as the total volume of Restoration Flows allocated for Flushing Flows for that year is not changed. Nothing in this Paragraph 5 is intended to fimit the flexibility to move or modify the Flushing Flows as provided in Paragraph 4 above, so long as the total volume of Base Flows, allocated during the Spring Period is not changed.

Page 2

Case 2:88-cv-01658-LKK-GGH Document 1341-1 Filed 09/13/2006 Page 57 of 80

6. Riparian Recruitment Flows.

In Wet Years, in coordination with the peak Flushing Flow releases, Restoration Flows should be gradually ramped down over a 60-90 day period to promote the establishment of riparian vegetation at appropriate elevations in the channel. The precise timing and magnitude of the ruparian recruitment release shall be based on monitoring of meteorological conditions, channel conveyance capacity, salmonid distribution and other physical/ecological factors with the primary goal to establish native riparian vegetation working within the constraints of the flood control system, so long as the total volume of Restoration Flows allocated for Riparian Recruitment for that year is not exceeded.

					Sult and	Flow at Upstream End of Roach				
Hydrograph Component		Friant Releaso	Ripanan Releases	Reach 7 205005	Mud Slough : Accretions	React 2	Reach 3	Reach 4	Reach 6	Confluence
Fall Base and Spring Run Incubation Flor	WOoL 1 - October 31	160	160	80	300	5	0	0	0	300
Fall Run Attraction Finer	Nov. 1-6 Palse	130	130	100	300	5	0	0	0	300
Fall-Run Spawning and incubation Flow	Nev 7 - Dec 31	120	120	80	400	5	0	. 0	D	-400
Winter Base, Flows	Jan 1 - Feb. 28	100	100	80	560	5	0	0	0	500
	Afards 1-15	130	135	90	500	5	0	0	0	500
Sprine Rise and Putse Flows	March 15-31	130	130	150	475	5	0	0	0	×75
coprine mina and Fulse : 10%5	April 1-15	150	:50	80	400	5	0	0	0	400
to a final second	April 15 - 30	150	150	80	400	. 5	0	0	0	400
Summer Base Flows	May 1 - June 30	:90	100	BO BO	400	5	0	0	0	4BI
SOMINE BASE FIDWS	July 1 - Aug 31	230	230	60	275	5	C	0	0	275
Spring-Run Spawning Flows	Sept. 1 - Supt. 30	210	210	80	275	5	0	0	0	275
	Tota Annua (acreiti)	116.662	118,562	60 568	276 012	3 814	D	6	6	275 468
	Assumed Riparian Kelease Restoration Rulease (af)	115, 58 2 0				-12				

1. Ripartan releases - Ripertan releases for current conditions average from 117- to 126 TAF/YR. Assumed approx 117 TAF/YR to be consistent with Stenner declaration which is derived from CALSIM and WSS estimates; adjusted monthly estimates to add to approx 117 TAF and in be more consistent with data from test 5 years; rounded to nervest 13 ofs . The Nov/Dec period 120 ofs estimates; adjusted monthly estimates to add to approx 117 TAF and in be more consistent with data from test 5 years; rounded to nervest 13 ofs . The Nov/Dec period 120 ofs estimates in recent years (2001 for a sverage of 130 ofs an average of 130 of and 200 of an June – triant base releases in recent years (2001 - 2005 have actually average of approximately 124,000 acre test in order to meet 5 ofs, at every diversion point during all seasons.

Reach 2 Losses. Determined by flow at head of Reach 2. Assumed relatively constant, steady static conditions. Flows less than 300 cfs at the head of the reach lose 80 cfs. consistent with 1995-2000 data including the 1995 pilot project. Flows batween 300 and 400 cfs lose 90 cfs. Flows above 42th and below 800 cfs lose 100 cfs. Used flow lose curve at Figure 2-4 of the Background Report of flows above 5 (600 cfs). That curve was based upon non-steady state tow conditions, and thus likely overestimate steady-state conditions. Assumed no losses in Reach 20 follow the Biturgation.

3. Salt and Mad Slough Accretions - 4 rom Sam of Mod and Salt Slough flow in Table 2-15 of the Background Report. Additional accretions octain in reach 4B and 5 but small (up to 50 cls) relative to total Mud and Salt Neugh inflow.

4. Reach 2 flow-. Pow at head of Reach 2 is equal to Friant release minus riparian rolease plus Gravely Ford base flow of 5 cfs. The Gravely Fand base flow is usually higher in winter associate of local monitory inflow, return flow and raging ment to meet 5 ofs flow at every diversion pant. Summar base flow is often night that 6 dis because of fingation return flow and requirement to meet 5 cfs flow at every development.

5. Reach 3 flow - Equal to Reach 2 flow minus Reach 2 losses. Reach 3 flow ignores contributions from Dolta Mendota Canol added at Mendota Pool which is subsequently diverted at the bottom of Reach 3 at Sack Dom into the Arroyo Canol and therefore assumes no net gain. Actual inflows chuld be greated participation acason.

 Reach 4 flows - Equal to the rick Reach 3 flows. Adult anal flow in Reach 3 is on "top" of existing indexion supply flows and no losses are assumed although Reach 3 wppwars to be a smalk losing reach at this time. May become gaining reach over time if losses in Reach 2 fill sufficient aguiter storage.

Reach 5 flow - Assume equal to Keach 4 flow. Seasonal lowes in Reach 48 and gains in Reach 48. Attrough likely a net gain in Reach 4 flow, assumed no gain for simplicity.
 Confinence - Reach 5 flow plus Mud and Sal Storgh. Does not not ide up to another 50 drive factoring of Mud and Sal Storgh. The WOST hydrograph included.
 Reach 5 flow and rounding of the November 1. Deem of the November 31 flowes for activity of the November 1. Deem of the November 31 flowes for an and the storage during the November 1.

Case 2:88-cv-01658-LKK-GGH

Document 1341-1

Filed 09/13/2006

Page 58 of 80-

Case 2:88-cv-01658-LKK-GGH

Document 1341-1

Filed 09/13/2006

Page 59 of 80⊓

			Gain a	nd Loss Assu	mptions	Flow at Upstream End of Reaph					
Hydrograph Component		Priant Release	Rigarian Reloases	Reach 2 losses	Sait and Mud Slough Accretions	Reach 2	Reach 3	Reach 4	Reach 5	Corlluence	
Fall Base and Spring Run Insubation Flou	Oat. 1 - Oct. 31	360	160	80	300	5	10	0	0	301	
Fall Run Attraction Flow	Nov. 1- 6 Pulse	400	130	100	300	275	175	1/5	175	475	
Fall-Run Spawning and Ingubation Flow	Nov. 7 - Dec 31	120	120	80	400	5	; 0	0	0	400	
Winter Base Flows	Jan. T Feb. 28	110	100	90	500	15	÷ 0	0	0	500	
	March 1-15	500	130	90	500	375	285	285	285	785	
Contract Discovered Distance (Incover	March 15-31	2500	130	1541	475	1375	1225	1225	1225	\$700	
Spring Rise and Pulse Flows	April 1 15	200	÷60	80	400	55	Ū	0	[]	400	
	April 16 - 30	200	150	81	400	55	C	0	0	400	
Summer Base Flows	May 1 - June 30	215	190	90	400	30 30	C	0	3	400	
Summer Base Flows	July 1 - Aug 31	255	230	6/3	275	30	D	0	3	279	
Spring Run Spawning Flows	Sopt. 1 - Sept. 30	260	210	80	275	55	C	0	5	275	
	Totai Annual (acre 🖘)	187,467	116.662	60,568	275,012	74,4DB	49.362	49,352	49.362	325,364	
	Assumed Ripadian Release Restoration Release (af)	116.662 /0,795									

Riparian releases for current conditions average from 11 /- to 126 TAF/YR. Assumed approx 117 TAF/YR to be consistent with Sterner declaration which is derived from CALSIM and WSS estimates; adjustent monthly estimates to add to approx 117 TAF, and to be more consistent with data from tast 5 years; nounded to nearest 10 cfs. The NowDec period 12b dis estimate is an average of the assumed stores or to consistent with tast forms tast 5 years; nounded to nearest 10 cfs. The NowDec period 12b dis estimate is an average of the assumed stores or to consistent with tast or everage of 12b dis in May and 200 dis or to so they, the MayJune period average of 190 dis is an average of 175 dis in May and 200 dis to period 12b dis works; and works or noon years (2001 - 2005 have actually average of approximately (24.000 acre feet in order to meet 5 dis, at every diversion point during all seasons.
 Reach 2 losses - Determined by flow at head of Reach 2. Assume relatively constant, steady state conditions. Flows at head of reach less than 300 loss 80 cfs cor sistent with 1995-200 data. Above 1000 and 400 cfs lose 90 cfs; flows above 100 and below 800 cfs lose 100 cfs; consistent with 1995-2000 data. Above 1000 cfs used flow lose curve on fig 2-4 of the Background Report. That curve was based upon non-steady state flow conditions and thus likely overestimate steady-state conditions. Assume no losses in Reach 28 below the Filtranton.

3 Salt and Mud Stough Accretions - From Sum of Mud and Salt Slough Tow in Table 2-15 of the Background Report. Additional accretions occur in reach 4B and 5 but small (up to 50 cls) relative to total Mud and Salt Slough inflow.

4 Reach 2 flow- Flow at head of Reach 2 is equal to Friant rolease minus riparian release plus Gravelly Ford base flow of 5 cfs. The Gravelly Ford base flow is usually higher in winter because of local tributary inflow, return flow, and requirement to meet 5 cfs flow at every diversion point. Summer base flow is often higher than 5 cfs because of irrigition return flow and requirement to meet 5 cfs flow at every diversion point.

5 Reach 3 now - Equal to Reach 2 how minus Reach 2 lossos. Reach 3 now ignores contributions from Data Mendota Canal added at Mendota Pool/which is subsequently diverted at the bottom of Reach 3 at Sack Daminto the Arroyo Canal and therefore assumes no net gain. Actual inflows could be greater particularly during the infigetion season.

6. Reach 4 fows Equal to the net Reach 3 fows. Additional flow in Reach 3 is on "hop" of existing irrigation supply flows and no losses are assumed although Reach 3 appears to be a small losing reach at this lime. May become gaining reach over time if losses in Reach 2 fit sufficient aquifer storage.

Reach 5 flow - Assume equal to Reach 4 flow, Seasonal losses in Reach 4A and gains in Reach 4B. Allhough likely a ner gain in Reach 4 flow, assumed no gain for simplicity.
 Confluence - Reach 5 flow plus Mud and Sait Slough. Does not include up to another 50 cfs of accretion upstream of Mud and Sait Slough that the WOST hydrograph included.
 Rows in the May 1 to une 30, July 1 to Aug 3B and Sent 1 to Sept 31st have elevated flows of 25 to 50 cfs reflecting 3TAF blocks of water to be used for riparian vegetation uniqueshing the November 10 Riparian release total sightly different in critical years due to variations in the length or the November pulsa flow and rounding of riparian release averages during the November 1 becomer 31 lime period.

			Gain a	nd Loss Assi	minicus		Flow at Up	stream Fr.	d of Reach	
Hydrograph Component		Friant Reluciso	Riparian Refeases	Reach 2 losses	Sall and Mud Slough Accretions	Reach 2	Reach 3	Reach 4	Reach 5	Confluence
Fall Base and Spring Run Incubation Flow	Oct. 1 - 31	350	160	80	300	195	115	115	115	415
Fal Run Attraction Flow	Nov. 1 - 10	700	130	100	300	575	4/5	475	275	775
Fall-Run Spewning and Incubation Flow	Nov. 11 - Dec 31	350	120	60	400	235	155	155	155	555
Winter Base Flows	Jan 1 - Feb. 28	350	100	80 80	500	255	175	175	175	675
the second s	March 1 - 15	500	*30	90	500	375	285	285	285	785
Carlos Pira and P. L. Carlo	March 16 - 31	1,500	130	150	475	1,375	1,225	1,225	1,225	1,700
Spring Rise and Pulse Flows	Appl 1-15	350	15D	80	400	205	125	125	125	525
	April 16 - 30	350	150	80	440	205	126	125	125	525
Summar Base Flows	May 1 - June 30	350	190	BC	400	185	86	85	85	486
and mar base Fights	July 1 - Aug 31	350	230	80	275	125	45	45	45	320
Spring-Run Spawnine Flows	Sept. 1 Sept 30	350	210	80	275	145	65	65	65	340
	Total Annual (acre 1)	300,762	116,741	60 727	275,221)	187.635	126.908	128,908	126.908	402.128
	Assumed Riparian Reloase	116,74 !						_0.2000/WH		
	Restoraton Release (al)	184,021								

 Npaniar releases - Riparian releases for current conditions average from 117- to 126 TAFYR. Assumed approx 117 TAFYR to be consistent with Steiner declaration which is dorived from CALSIM and WSS estimates; adjusted monthly estimates to add thi approx 117 TAF and to be more consistent with data from last 5 years; monred to nearest 10 cfs. The Nov/Deo period 120 cfs estimate is an average of the assumed 130 cfs average in Nov and 110 cfs in Dec; the May/June period average of 190 cfs as an average of 175 cfs in May and 200 and 100 cfs in Dec; the May/June period average of 190 cfs as an average in recent ytens; (2001 - 2005 have actually average of approximicity 124.000 are feet in order to meet 5 dfs. at every diversion point during all seasons.
 Reach 2 losses - Determined by flow at head of Reach 2. Assume relatively constant, steady-state conditions. Flows at head of reach less than 300 loss 80 cfs consistent with 1995-200; data including 1999 pilot project. How between 300 and 400 cfs lose 90 cfs; (lows above 400 and below 800 cfs kose 102 cfs; consistent with 1995-200 data. Above 1000 cfs used flow lose curve on fig 2-4 of the Background Report. That curve was based upon non-steady state flow conditions and thus likely oversetimate sleady-state conditions. Assume no losses in Reserv 25 below the 84ucration.

3. Salt and Mud Slough Accretions - From Sum of Mud and Salt Slough 9nw in Table 2-15 of the Background Report. Additional accretions occur in reach 4B and 5 but small (up to 50 cfs) relative to total Mud and Salt Stough inflow.

4. Reach 2 flow – Flow at head of Rewith 2 is equal to Friant refease minus riparian release plus Gravelly Ford base flow of 5 cts. The Gravelly Ford base flow is usually higher in winter because of local bibitary inflow, rotum flow and requirement to meet 5 cts flow at overy diversion point. Summer base flow is often higher than 5 cts because of inglation return flow and requirement to meet 5 cts flow at every diversion point.

5 Reach 3 flow - Equal to Reach 2 flow minus Reach 2 losses. Reach 3 flow ignorus contributions from Delta Menduta Canal added at Mendota Pool which is subsequently divorted at the bottom of Reach 3 at Sack Dam into the Arroyo Canal and Therefore assumes no net gain. Actual cillows could be greater particularly during the irrigation season.

8. Reach 4 Sows - Equal to the not Reach 3 flows. Additional free in Reach 3 us on "top" of existing imigation supply flows and no losses are assumed although Reach 3 appears to be a small losing reach at this time. May become garning reach: over time if losses in Reach 2 litt sufficient aquifer storage.

7. Reach 5 few Assume equal to Reach 4 flow, Seasonal losses in Reach 4A and gains in Reach 4B. Although likely a not gain in Reach 4 flow, assumed no gain for sumplicity. 8. Combuence - Reach 5 flow of us Mud and Salt Slough. Does not include up to another 50 cfs of accretion upstream of Mud and Salt Slough that the WOST hydrograph included Case 2:88-cv-01658-LKK-GGH

Document 1341-1

Filed 09/13/2006

Page 60 of 80

Case 2:88-cv-01658-LKK-GGH

Document 1341-1

Filed 09/13/2006

Page 61 of 80

	2007023	11000	Gair a	nd Loss Assu	inplors	Flow at Upstream End of Reach						
Hydrograph Component		Friant Release	Riparian Releases	Reach 2 losses	Salt and Mud Slough Accretions	Reach 2	Reach 3	Reagh 4	React 6	Confluence		
Fall Base and Spring Run Ingubation Flow	Out. 1 - 31	350	160	BD	300	195	115	115	115	418		
Fall Run Attraction Flow	Nov 7 - 10	700	130	100	305	575	475	475	475	775		
Fall Run Spawning and Input ation Flow	Nov 11 - Dec 31	350	120	80	400	235	155	155	155	555		
Minter Base Flows	Jan. 1 - Feb 28	350	100	80	500	255	175	1/5	175	675		
	March 1 - 15	30C	130	90	500	375	285	285	285	785		
Spring Rise and Pulse Flows	March 16 31	1,500	130	150	475	1.375	1,725	1,226	1.225	1.700		
shin 8 ruse and core close	April 1-15	2.500	150	:75	400	2,365	2,180	2,180	2:80	2,580		
	April 18 - 30	.350	150	80	400	205	125	125	(25	525		
Summer Base Flows	May 1 June 30	350	190	80	400	165	68	85	85	480		
ACTIONED DALE FILME	July 1 - Aug 31	350	230	80	275	\$25	45	45	45	320		
Spring-Run Spawning Flaws	Supt. 1 - Sept. 30	350	210	80	275	145	65	65	65	340		
	Total Annual (acre (L)	364.817	116.741	63,548	275,220	251,490	187 942	187,942	187,942	463,162		
	Assumed Riparian Release	118,741										
	Restoration Release (af)	247.8/6										

1. Riperian releases - Riparian releases for current conditions average from 117- to 126 TAF/YR. Assumed approx 117 TAF/YR to be consistent with Steiner declaration which is derived from CALSM and WSS estimates; adjusted monthly estimates to add to agricy 117 TAF are table to more consistent with data fram last 5 years; rounced to represt 10 of s. The Nov/Dec period 120 of s ostimate is an average of the assumed 130 of s average in Nov and MD of yin Dec; the May/Jure period average of 199 of s is an average of 175 of s in Max and 200 of s

2. Reach 2 iosses - Determined by flow ut head of Reach 2 Assume relatively constant, steady state conditions. Flows at head of reach less than 300 lose Bb cfs consistent with 1995-200 data for a consistent with 1995-200 data for a consistent with 1995-200 data. Above 100 dis used how boo curve on fig 2 4 of the Background Report. That curve was based upon non-steady-state for ordinations and thus Really bereastimate steady state conditions. Assume no losses in Reach 28 below the Bifurcation.

3. Salt and Mud Slough Accretions - From Sum of Mud and Salt Slough flow in Table 2.15 of the Background Report. Additional accretions occur in reach 4B and 5 out small (up to 50 cfs) retailve to lotal Mud and Salt Slough inflow.

1. Reach 2 flow- Flow at heap of Reach 2 is equal to Friant release mutus riportian release glus Gravely Ford base flow of 5 cis. The Gravely Ford base flow is usually higher in winter because of local tributary inflow, return flow and requirement to meet 5 cfs flow at every diversion point. Summer base flow is often higher than 5 cfs because of intigation return flow and requirement to meet 5 cfs flow at every diversion point.

5. Reach 3 flow - Equal to Reach 2 flow minus Reach 2 losses. Reach 3 flow ignores contributions from Della Mendola Canal added at Mendola Pool which is subsequently diverted at the bottom of Reach 3 at Seck Dam into the Arrayo Canal and therefore assumes no not gain. Actual inflows could be greater particularly during the irrigation season.

6. Reach 4 flows - Equal to the net Reach 3 flows. Additional flow in Reach 3 is on "top" of existing irrigation supply flows and no tosses are assumed although Reach 3 appears to be a small losing reach at this time. May become galoning reach over time if losses in Reach 2 fill sufficient aquifer storage.

/. Reach 5 flow - Assume equal to Reach 4 flow. Seasonal losses in Reach 4A and gains in Reach 4U. Although likely a net gain in Reach 4 flow, assumed no gain for simplicity.

8. Confluence - Reach 5 flow plus Mud and Sant Slough. Does not include up to enother 50 c/s of accretion upstream of Mud and Sat Slough that the WOST hydrograph included.

	S - 201 - 201 - 20		Gain a	nd 4 oss Assu	mations		Flow at Up	aues m Eng	of Reach	
Hydrograph Component		Foant Release	Riparian Roleases	Reach 2 Iosses	Salt and Murt Slough Accretions	Reach 2	Reach 3	Reach 4	Reach 5	Confluence
Fall Base and Spring Run incubation Flow	Oct. 1 - 31	350	160	80	300	195	115	115	115	413
Fall Run Attraction Flow	Nov. 1 - 10	700	130	100	300	575	475	475	475	77
all-Run Speaning and Incubation Flow	Nov. 11 Dec 31	350	120	80	400	235	155	155	:55	558
Vinter Base Flows	Jan. 1 - Feb. 28	350	100	80	500	255	175	1/5	175	675
	March ! 15	500	130	90	500	375	285	785	285	785
Spring Rise and Pulse Flows	March 16 - 31	1,500	130	150	475	1.375	1.225	1.225	1 225	1,700
spring ruse and ruse riowa	Au:ii: 1-15	2.500	150	175	400	2.355	2,180	2,180	2,180	2,580
	April 16 - 30	4,000	150	200	400	3 855	3,655	3,655	3,655	4,055
Summer Base Flows	May 1 June 30	350	190	80	400	165	; 85	85	85	48!
Summer Dase Flows	vidy 1 - Aug 31	350	230	80	276	125	45	45	45	320
soring Run Spawning Hows	Sept. 1 - Sept. 30	350	210	80	275	145	65	65	65	34(
	Total Annuzi (nore It.)	473,022	116,741	67,112	275,220	359,895	292,783	292.783	292,783	568.003
	Assumed F parian Release	\$ 16.741	8							
	Restoration Release (af)	356.281								

1. Riparian releases - Ripanan releases for current conditions average from 117- to 128 TAF/YR. Assumed approx 117 TAF/YR to be consistent with Steiner declaration which is derived from CAI SIM and WSS estimates; adjusted monthly estimates to add to approx 117 TAF, and to be more consistent with data from last 5 years, rounded to rearrest 10 cfs. The NewDec period 120 cfs estimate is an average of 175 cfs average in Nov and 110 cfs in Dec; be May/June period average of 130 cfs is an average of 175 cfs in May and 200 cfs in June. Friend tasks in recomplete the assumed 130 cfs average of approximately 124 cfs are lead in order to meet 5 cfs. at every diversion point during all essences. 2. Rearlt 2 lasses - Determined by flow at head of Reach 2. Assume relatively constant, steady state conditions. Flows at head of react, leas than 300 lose 80 cfs consistent with 1995-200 risks including 1999 pilot project. Flows between 300 and 400 cfs lose 100 cfs (lose 100 cfs lose 100 cfs lose

3. Self and Mud Sloogh Accretions - From Sum of Mud and Self Slough 10w in Table 2 15 of the Background Report. Additional accretions occur in reach 4B and 5 but small (up to 50 cfs) relative to total Mud and Salt Slough inflow.

4. Reach 2 flow- How at tread of Reach 2 is equal to Friant release minus riportan release plus Gravely Ford base flow of S cfs. The Gravely Ford base flow is usually higher in winter because of local tributary inflow, return flow and requirement to meet 5 cfs flow at every diversion point. Summer base flow is often higher than 5 cfs because of implation return flow and requirement to meet 5 cfs flow at every diversion point.

5. Reach 3 flow - Equal to Reach 2 flow minus Neach 2 tosses. Reach 3 flow grounes contributions from Delta Menduta Canal added at Menduta Puol which is subsequently diverted at the bottom of Reach 3 at Sack Daminto the Arroyo Canal and therefore assumes no net gain. Actual utilizes could be greater particularly during the intigation secon.

6. Reach 4 flows - Equal to the net Reach 3 flows. Additional Knw in Reach 3 is on "top" of existing urigation supply flows and no kesses are assumed although Reach 3 augubars to be a small lowing reach at this time. May become gaining reach over time if losses in Reach 2 III sufficient aquifer storage.

7. Reach 5 flow - Assume equal to Reach 4 flow. Seasonal losses in Reach 4A and gains in Reach 4B. Although likely a net gain in Reach 4 flow, assumed no gain for emplicity. B. Confluence - Reach 5 flow plus Murt and Sek Stough. Does not include up to another 50 cfs of accretion upstream of Mud and Salt Slough that the WOSF Hydrograph included.

Appendix

Case 2:88-cv-01658-LKK-GGH

Document 1341-1

Filed 09/13/2006

Page 62 of 80

Case 2:88-cv-01658-LKK-GGH

Document 1341-1

Filed 09/13/2006

Page 63 of 80

			Gain and Loss Assumptions			Flow at Upstream End of Reach				
Hydrograph Component		Friairt Refease	Riparian Releases	Reach 2 losses	Salt and Mud Shough Accretions	Reach 2	Reach 3	Reoch 4	Reach 5	Confluence
Fall Base and Spring Run Incubation Flow	Oct. 1 - 31	350	180	06	300	195	115	115	115	415
Fall Run Attraction Flow	Nav. 1 - 10	700	130	100	300	575	475	475	475	/75
Fall-Run Spawning and Insubation Flow	Nov. 11 - Dec 31	350	120	80	400	235	155	155	155	565
Winter Base Flows	Jan. 1 Feb. 78	350	100	80	500	255	175	175	175	675
in the second se	March 1 - 15	500	130	90	500	375	285	285	285	785
Spring Rise and Pulse Flows	March 16 - 31	1,500	130	150	475	1,375	1.225	1.225	1,225	1,700
opring more and house hows	April 1-15	2.500	16D	175	400	2,355	2,180	2 180	2,180	2.580
	April 16 - 30	4,00%	150	200	400	3,855	3.655	3.655	3,655	4,055
Summer Base Flows	May 1 - June 30	2.000	190	165	400	1,815	1,650	1,650	1,854	2.050
Sounder Base Flows	July 1 - Aug 31	350	230	80	275	125	45	45	45	320
Spring-Run Spriwning Plaws	Sept. 1 - Sept. 30	350	210	80	275	145	68	65	85	.340
	Total Annual (viore ft.)	672,309	116.741	77,378	275,220	559,182	481,803	481,803	481,803	757.023
	Assumed Stuarian Reloase	116,741			11000000000000000					
	Restoration Release (al)	555.56B								

Ripetian releases - Ripetian releases for current conditions average from 117-to 128 TAF/VR. Assumed approx 117 TAF/VR to be consistant with Stoinen declaration which is derived from CALSAM and WSS estimates, adjusted monthly estimates to add to approx 117 TAF, and to be more consistent with data from task prears: rounded to nearest 10 cfs. The NovDec period 120 cfs estimates is an average of the assumed 130 cfs average in Nov and 110 dfs in Dec; the MayJune period average of 190 cfs is an average of 176 cfs in May and 200 cfs in June. Frian task releases in more wars (2001 - 2005 have actually average of approximately 124 c00 acro foet in order to meet 5 m/s. at every dwelsion point during all seasons.
 Reach 2 losses. Determined by flow at head of Reach 2. Assume relatively constant, steady-state curditions. Flows at head of reach less than 300 heal 80 cfs consistent with 1995-200 data (anound 100 cfs lose 30 cfs; flows above 400 and below 800 cfs lose 100 cfs; consistent with 1995-200 data. Above 1000 cfs used flow loss curve on tig 2-4 of the Background Report. That curve was based upon non-steady-state flow conditions and those tikely overestimate steady-state conditions. Assume no kases in Reach 28 bolow the Bfunction.

3. Salt and Mud Slough Accretions - From Sum of Mud and Salt Slough flow in Takte 2-16 of the Background Report. Additional accretions output in reach 4B and 5 but small (up to 50 c/s) relative to total Mud and Salt Slough inflow.

A. Roach 2 flow- Flow at head of Reach 2 is equal to Frant release minus riportian release plus Gravely Ford base flow of 5 cts. The Cravely Find base flow a usually higher in winter because of local tributary inflow, roturn flow and requirement to meet 5 cts flow at every diversion point. Summer base flow is often higher than 5 cts because of irrigation return flow and requirement to meet 5 cts flow at every diversion point. Summer base flow is often higher than 5 cts because of irrigation return flow and requirement to meet 5 cts flow at every diversion point.

5. Reach 3 flow - Equal to Reach 2 flow minus Reach 2 losses. Reach 3 flow ignores contributions from Delta Mendota Carra(added at Mondota Pool which is subsequently revend at the bottom of Reach 3 at Sack Dam into the Arroyo Canal and therefore assumes no not goin. Actual inflows could be greater particularly during the impation season

 Reach 4 flows - Equal to the net Reach 3 linuw. Additional flow in Reach 3 is on "top" of axisting inigation supply flows and no rosses are assumed withough Reach 3 appears to be a small losing reach at this time. May become gaining reach over time if losses in Reach 2 fill sufficient aquifer storage.

/. Reach 5 flow Assume equal to Reach 4 flow. Seasonal losses in Reach 4A and gains in Reach 48. Although likely a net gain in Reach 4 flow, sesumed no gain for simplicity.

8. Confluence - Reach 5 flow plus Mud and Salt Slough. Dues not include up to another 50 ofs of accretion upstream of Mud and Salt Slough that the WOST hydrograph included. 9. May - June flow of 2 000 c.f.s. is block of water for shaping as riperian recruitment recession flow.

- 1 DRAFT
- 2 **Restoration Flows Guidelines**
- Appendix E Reach Definitions and
 4 CDEC Gages

This page left blank intentionally.

Appendix E – Reach Definitions and CDEC Gages

- 3 Figure 6 shows the location of gages used in 13(j)(ii) and 13(j) (iv) in the Restoration
- 4 area from Friant Dam to the San Joaquin River's confluence with the Merced River.
- 5 Table E-1 provides the electronic links to flow data in the Restoration Area

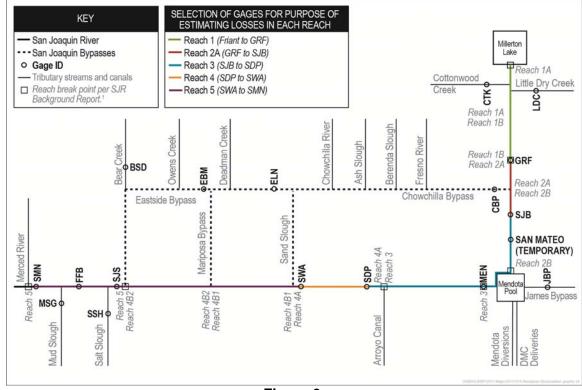


Figure 6. Gages and Reaches of the San Joaquin River in the SJRRP Restoration Area

Electronic Links to Monitoring Gages on the San Joaquin River						
Physical Location	CDEC ID	Electronic Link				
San Joaquin River at or immediately below Friant Dam	MIL	http://cdec.water.ca.gov/cgi- progs/stationInfo?station_id=MIL				
San Joaquin River at Gravelly Ford	GRF	http://cdec.water.ca.gov/cgi- progs/stationInfo?station_id=GRF				
San Joaquin River below the Chowchilla Bifurcation Structure	SJB	http://cdec.water.ca.gov/cgi- progs/staMeta?station_id=SJB				
San Joaquin River below Sack Dam	SDP	http://cdec.water.ca.gov/cgi- progs/staMeta?station_id=SDP				
San Joaquin River at the head of Reach 4B	SWA	http://cdec.water.ca.gov/cgi- progs/staMeta?station_id=SWA				
San Joaquin River at the San Joaquin River and Merced River confluence	SMN	http://cdec.water.ca.gov/cgi- progs/staMeta?station_id=SMN				
Cottonwood Creek near Friant Dam	СТК	http://cdec.water.ca.gov/cgi- progs/staMeta?station_id=CTK				
Little Dry Creek	LDC	http://cdec.water.ca.gov/cgi- progs/staMeta?station_id=LDC				
Chowchilla Bypass	CBP	http://cdec.water.ca.gov/cgi- progs/stationInfo?station_id=CBP				
James Bypass	JBP	http://cdec.water.ca.gov/cgi- progs/stationInfo?station_id=JBP				
San Joaquin River near Mendota	MEN	http://cdec.water.ca.gov/cgi- progs/stationInfo?station_id=MEN				
Eastside Bypass near El Nido	ELN	http://cdec.water.ca.gov/cgi- progs/stationInfo?station_id=ELN				
Eastside Bypass below Mariposa Bypass	EBM	http://cdec.water.ca.gov/cgi- progs/stationInfo?station_id=EBM				
Bear Creek below Eastside Canal	BSD	http://cdec.water.ca.gov/cgi- progs/stationInfo?station_id=BSD				
San Joaquin River near Stevinson	SJS	http://cdec.water.ca.gov/cgi- progs/stationInfo?station_id=SJS				
Salt Slough at Highway 165 Near Stevinson	SSH	http://cdec.water.ca.gov/cgi- progs/stationInfo?station_id=SSH				
San Joaquin River at Fremont Ford Bridge	FFB	http://cdec.water.ca.gov/cgi- progs/stationInfo?station_id=FFB				
Mud Slough near Gustine	MSG	http://cdec.water.ca.gov/cgi- progs/stationInfo?station_id=MSG				

Table E-1.

- DRAFT
- 2 **Restoration Flows Guidelines**
- **3** Appendix F Gravelly Ford Compliance

This page left blank intentionally.

Appendix F – Gravelly Ford Compliance

- 2 Technical appendices describe the supporting information and background for the
- 3 compliance procedures described in the main body.

4 **Physical Process Data**

5 Physical process data describe the anticipated outcomes from a change in releases from

- 6 Friant Dam to assist in developing a method that achieves objectives for flows in the 7 river.
- Initial Response, 2 Days (Interim Flow monitoring data as reported in the 2010 ATR).
- Stabilization, 4-5 days (Interim Flow monitoring data as reported in the 2010 ATR)
- 12 3. Measurement Accuracy, 8%-15% (USGS stream gage monitoring protocols).
- Release Increment for a GRF change, 15 cfs (Personal communication with Friant Dam operations staff).
- 15 5. Flow Variability, 20-40 cfs (Interim Flow monitoring data as reported in the 2010 ATR).
- 6. Accuracy of Friant Release, 5% (Personal communication with Friant Dam operations staff).
- River Connectivity, unknown (NRDC believes that 1 day of flows less than a
 threshold risks losing connectivity. No citations or studies were provided. Travel
 time, transient effects, and channel storage would likely require several days of
 depressed flows to break connectivity, but no analysis or data collection is
 available at this time).

The general approach seeks to avoid intentionally introducing oscillations in the releases that would result in alternating periods of measured flows over or under targets.

26 **Operations Considerations**

Operational considerations include the complexity of the method, the frequency of application, and the work schedule.

Weekly procedures will be implemented by Staff at Friant Dam and require a
 method consistent with operation procedures at Friant Dam (e.g., Spreadsheet
 Row Calculation, schedules and measured data only)

- Weekly procedures may be implemented by the SJRRP Office and may include
 methods that require accounting for past releases and forecasts of future
 conditions.
- 4 The schedule for procedures should occur on Mondays, and Fridays. Reclamation should
- 5 request a primary contact and backup (in event the primary is unavailable) so that
- 6 Restoration Administrator and TAC can address unanticipated issues that may arise
- 7 during evaluation and could compromise river connectivity.

8 Evaluation of Proposed Method

9 An example spreadsheet is attached including an evaluation of performance in 2012,

- 10 using both daily and weekly flow adjustment methods. Weekly and daily flow adjustment
- 11 methods produced similar results, meeting the flow target 26 percent and 28 percent of
- 12 the times, respectively. The SJRRP will take an experimental approach to implementing
- 13 flow compliance at Gravelly Ford. The proposed methodology does not consider the
- 14 inability to measure flows within 10 cfs at Gravelly Ford or the historical experience of
- 15 the Friant Dam staff in making changes likely to affect flows at Gravelly Ford. The
- 16 method does not include smoothing the transition between target time periods and defers
- 17 that decision to the TAC and Restoration Administrator. If the Restoration Administrator
- 18 does not elect to smooth the transitions, most years will require a block of water at each
- 19 increase in Gravelly Ford Flow targets unless diversions are less than anticipated.
- 20 We anticipate the need to revise the numbers used for thresholds in this procedure during
- subsequent implementation years, but Reclamation will use numbers agreeable to the
- 22 Settling Parties.

- DRAFT
- 2 **Restoration Flows Guidelines**
- **3** Appendix G Replacement or Offset
- **4 Programs and Projects**

This page left blank intentionally.

Appendix G – Replacement or Offset Programs and Projects

- 3 This appendix to the Restoration Flow Guidelines lists projects that have been undertaken
- 4 or funded by the Secretary or other Federal Agency or agency of the State of California
- 5 specifically to mitigate the water delivery impacts caused by the Interim Flows and
- 6 Restoration Flows.
- 7 Programs and Projects will be inserted as they are developed.

	Project Name	Date of Implementation
8		

2

This page left blank intentionally.

- **Restoration Flows Guidelines**
- ² Appendix H RWA Calculation
- ³ **Process**

Appendix H - RWA Calculations and Water Use Curve Model Documentation

3 Purpose

4 This appendix to the Restoration Flow Guidelines provides the background and documents the development of the Recovered Water Account (RWA) procedures. The 5 RWA procedures determine and account for reductions in water deliveries (i.e. water 6 7 supply impacts) to Friant Division long-term contractors (Contractors) caused by Interim 8 Flows and Restoration Flows (collectively referred to as Restoration Flows) pursuant to 9 Paragraph 13(j)(iii) of the Stipulation of Settlement in NRDC et al. vs. Rogers et al. The 10 objective of this appendix is to provide background regarding the discussion and rationale 11 leading up to the selection of a RWA calculation method by the Settling Parties. Another purpose is to describe the explicit procedures for the selected modeling methodology, and 12 13 associated subsequent "steps" for the complete RWA accounting. This Appendix 14 supplements the main body of the Restoration Flow Guidelines (RFG) and provides the detail to apply the procedures for determining the reduction in water deliveries. The 15 16 amount of RWA credits accrued by a contractor in a year equals the net delivery 17 reductions (calculated with the procedures detailed in this appendix) minus any water 18 returned by Recirculation and replacement or offset programs as described in the main

19 body of the RFG.

20 Background

Reclamation, in consultation with the Settling Parties, developed a range of potential
 approaches for the Recovered Water Account method including:

- Annual Settlement Model: operation of the long-term monthly planning model
 developed during the Settlement negotiations, and was applied every year going
 forward. After comparison to specific historical years, some of the parties did not
 believe the long-term planning model would result in sufficient accuracy for a
 single year's reduction in long-term contract water deliveries in isolation when
 used as the RWA calculation method.
- Water Authority Modeling Tool (WAM Tool): Uses a hindsight estimate of the ability to sustain canal capacity. The WAM Tool was not sufficiently developed to be available for the RWA methodology, does not consider baseline conditions, and includes water supplies that may or may not be eligible for consideration as a reduction in water deliveries pursuant to Paragraph 13.(j)(iii) (e.g. 215 to non-Friant contractors).
- One-Time Lump Sum: allocation of total settlement estimates of reductions in
 water deliveries through 2026. The parties desired an annual allocation method
 specific to the hydrology of individual years. Particularly as real time impacts
 and hydrology affect Class 1 and Class 2 contracts differently and the lump sum

1 2 3	approach did not appear to be consistent with Settlement language in Par 16(b)(1 stating that the Secretary shall "monitor and record reductions in water supplies".
4 5	• Annual Lump Sum: allocation of the average annual impacts each year. The parties desired a method specific to the hydrology of individual years.
6 7 8 9	• Factor Approach: allocation of impacts based on year types considering the year-type specific average impact. The parties desired a less generalized method that accounts for year-specific hydrology rather than relying on averaging over time.
10 11 12	• Expert Panel: each year a panel reviews available data to determine the RWA impacts. The parties considered the panel too subjective and raised concerns about the ability to come to resolution each year.
13 14 15	• Flood Reset: Any flood releases would negate and remove prior SJRRP releases from the calculation of RWA impacts for that year. The parties desired a method that provided a specific use of water as of 2006.

16 Baseline Model

17 The Settling Parties agreed that an approach which could calculate a pre-restoration baseline condition using the specific year inflow hydrology and which could be used with 18 Restoration flows was preferred. Concurrent with Reclamation efforts, the Contractors 19 developed a proposal for computing reductions in water deliveries predicated on a 20 21 baseline condition defined by a combination of contractual, regulatory, legal and physical circumstances that existed prior to October 2006. This combination of factors resulted in 22 23 a potential water use curve (WUC) baseline model that could be used to calculate water 24 supplies available to be captured by Friant Districts under both a with and without Restoration scenario. The difference in available supplies between the two scenarios, as 25 determined by the Millerton Lake inflow-based model with spill considerations, resulted 26 27 in the potential reduction in contract water supply to Contractors due to Restoration Flows. The Settling Parties agreed to use the Friant WUC baseline model approach to 28 29 calculate a gross water supply reduction. 30 In addition to a WUC baseline model the Settling Parties proposed that the net water 31 supply reduction each year be further refined and reduced as a result of additional "tests"

32 (including a late season spill, comparison to the maximum cumulative Friant Division

33 contract deliveries of 2.2 MAF, and comparing to actual water availability on a district by

34 district basis). Reclamation agreed to independently develop an inflow-based

35 spreadsheet model based upon the Contractors WUC baseline model approach to perform

the RWA calculations for use by the Plaintiffs and Contractors in developing a jointly

37 supported RWA accounting methodology.

38 Coincident with the Friant proposal, the Plaintiffs and Contractors developed a December

39 23, 2011 list of shared principles to reach an agreement on the RWA methodology as

40 follows:

1	1.	Use an inflow-based operations model as proposed by Friant.
2 3	2.	The model will use two Water Use Curves (WUC). One for Wet and one for Normal-Wet year types.
4 5	3.	All other year types will be run against the NW WUC to capture the effects of the occasional rare spill in those drier year types.
6 7	4.	Potential WUC's are attached as placeholder curves that may need to be revised to meet the objectives of these deal points.
8 9	5.	The current USBR model is not yet fully reviewed for completeness and accuracy by the parties, including USBR (draft model).
10 11 12 13	6.	The draft model, when run for the Steiner USAN period of 1922-2003, using the USAN data for inflow and March 1 storage as opposed to real time data, and using the above WUCs, calculates average impacts of approximately 185,000 af/yr.
14 15	7.	The parties will jointly review, modify, and complete the model consistent with the then approved model methodology.
16 17 18 19 20 21 22	8.	Once the model is complete, the parties will make minor, joint modifications to the WUC so that impacts equal 185,000, within reasonable accuracy. This includes WUC modifications that bring impacts up should they fall below 185,000 AF/year in the final model as well as making WUC modifications to bring the impacts down should they fall above 185,000 AF/year. Any WUC modifications necessary to reduce resultant impacts will be made first to the Wet year WUC with the intent of not materially affecting the NW WUC.
23 24 25 26	9.	Both parties recognize that past results do not guarantee future performance and once the WUC's are modified, they will be finalized for use going forward, with real time data, and the 185,000 impact component used to fine tune the WUC's will have no further significance.
27	10	. Parties agree to review the methodology on a periodic basis.
28 29 30	11	The impact methodology includes a process for reducing impacts in the case of a real time spill, outside the Mar through Jul period. This may reduce impacts below that calculated above.
31 32 33	12	The impact methodology includes a process for individual district tests as currently described in the RFG section 13(j)(iii). This may reduce impacts below that calculated above.
34 35 36	13	. Both parties intend to provide further joint comments to Reclamation to refine the written methodology procedures (i.e. RFG text for 13(j)(iii)) consistent with these points.
37 38 39 40 41	14	. Both parties intend to provide further joint comments to the RWA policy paper. In that regard, the parties agree to delete the language "Reclamation believes the provisions provided in the Settlement relative to the Recovered Water Account apply only to reductions in Class 1 and Class 2 contract amounts" and replace it with a statement along the lines of "The relative distribution of the "other" canal

- deliveries is not precisely known and there is a disagreement among the Settling
 Parties regarding whether or the extent to which reduction in 215 deliveries to
 long-term contractors should be included as "reductions in water deliveries". This
- 4 methodology and model is not intended to promote or constrain the position of
- 5 any Party and the Parties agree that, notwithstanding any previously stated
- 6 positions, it is not necessary to resolve that issue in the development of the 7 adopted methodology."

8 Water Use Curves

9 Consistent with the shared principles above, the Settling Parties asked Reclamation to

- 10 refine WUC's to generate a historic average annual reduction in water deliveries of
- 11 approximately 185 TAF/YR using the 1922-2003 Millerton Reservoir inflow from the

12 CALSIM model (which are largely derived from the USAN model) and the Method 3.1

13 gamma transformation of the Exhibit B water year type restoration releases. In addition,

in order to reflect the delivery reductions to the Contractors at the canal turnouts and to

15 calibrate the model to derive the average reduction of 185 TAF/YR, canal losses were

assumed to be 1.5% of available water at canal headworks.²

17 The "% Contract" denotes the percent of each Contractor's Class 2 contract that

18 historically had to be delivered during Obligation periods as defined in the Contractor's

19 prior water service contracts. Note also that the original Obligation percentage

20 requirements were revised/reduced in subsequent Interim Water Service contracts. The

21 following potential water use curves were investigated in Reclamation's Model:

Month	% Contract (revised)	Diversion Rate (cfs)	% Contract (original)	Diversion Rate (cfs)
March	7	1593.8	20	4553.8
April	12	2823.3	20	4705.6
May	16	3643.0	20	4553.8
June	20	4705.6	20	4705.6
July	20	4553.8	20	4553.8

• Historical original and revised Obligation Requirements (N and NW Years)

² The total Friant Division delivery equals the water supply less an assumed percentage identified as canal losses within the model. The inclusion of a loss factor was intended to account for the difference between diversions at Friant Dam compared to the deliveries at the individual Contractor turn-outs. Some historical studies indicated a loss factor of 3.8% based on measurements (Memo to Office of Inspector General). For the purpose of the RWA model the loss factor was used as a calibration parameter to obtain the target average reduction in water deliveries. The resulting factor of 1.5% was within the range of historically measured values and was used to calibrate the model.

1 • Combined Adjusted Historical Maximums

Month	% Contract	Diversion Rate (cfs)
March	12	2,672.1
April	15	3,372.9
May	18	4,191.6
June	23	5,124.2
July	24	5,360.7

2 • Using the revised Obligation Period applied to all year types

Month	% Contract	Diversion Rate (cfs)
March	7	1593.8
April	12	2823.3
May	16	3643.0
June	20	4705.6
July	20	4553.8

- 3 The model did not result in significant differences when using different water use curves
- 4 for wet and normal-wet years. Subsequent evaluation of historical data also did not
- 5 identify significant differences in operations between wet and normal-wet years. Year-
- 6 specific conditions appeared more significant than overall water supply; therefore, a
- 7 single set of water use curves (i.e. N and NW curves using the same parameters) were
- 8 used in the Reclamation WUC baseline model and calibrated so as to generate reductions
- 9 in water deliveries of 185,000 AF per year on average. The long term average reduction
- 10 in deliveries results (with 1922-2003 base period, Gamma 3.1 transformation, canal
- 11 losses, etc.) are shown below. The revised Obligation Period water use curve was used.

Year-Type	Reduction in Deliveries (AF)	River Demand (AF)	Percent of Releases as Impact (AF)
Critical Low	0	0	0%
Critical-High	-69,298	-70,353	98%
Dry	-185,124	-188,566	98%
Normal-Dry	-241,846	-245,723	98%
Normal-Wet	-216,975	-351,960	63%
Wet	-90,266	-556,542	16%
Average	-185,020	-318,844	58%

- 12 The Parties agreed that once the WUC's are chosen, (in this case the revised Class 2
- obligation amounts of 7%, 12%, 16%, 20% and 20%) the 185,000 AF/year number used
- 14 to calibrate the model will have no further significance and does not in any way reflect
- 15 model performance going forward.

16 **Application Going Forward**

- 17 As described above, an inflow-based WUC model is utilized to calculate the difference of
- 18 water made available to Contractors between the two scenarios (with and without

- 1 Restoration). The model calculates the effect of projected Millerton Lake spill releases,
- 2 under both with and without Restoration scenarios. Water released for Restoration that
- 3 otherwise would have spilled reduces the impacts to Contractors from Restoration flows.
- 4 The model uses actual daily values (subject to final QA/QC) for the inflow to Millerton
- 5 Lake and the Restoration Flow Schedule (Restoration Administrator recommended flow
- 6 schedule approved by Reclamation). The process to ultimately determine the <u>net</u> impacts
- 7 (as impacts will be potentially less than total Restoration release) to Contractors follows
- 8 the following steps.

9	1.	Determine Friant-wide Impacts using the daily WUC model (March through July
10		period).
11	2.	Determine Friant-wide Impacts using late season spill calculations (August
12		through February period).
13	3.	Summation of Friant-wide impacts (March through February water year).
14	4.	Compare total Friant-wide water made available to Contractors with Restoration
15		(from Step 1, Item 7 and Step 2, Item 10 below) to Friant-wide total contract
16		quantity of 2.2 MAF.
17	5.	Compare Step 3 to Step 4 and use the lesser of the two as net Friant-wide Impacts.
18	6.	Distribution of net Friant-wide Impacts from Step 5 to each individual Contractor.
19	7.	Compare actual total water made available to each individual Contractor to each
20		Contractor's total contract amount.
21	8.	Compare Step 6 to Step 7 and use the lesser of the two as the net impact to each

22 individual Contractor.

Step 1: Determine Friant-wide Impacts using the daily WUC Model (March through July period).

25 The WUC model is an excel spreadsheet that models daily operations for Millerton Lake

- ²⁶ for the March through July period. In order to determine water delivery reductions to
- 27 Contractors due to Restoration in the March-July period, the WUC model determines the
- amount of water that can be captured and made available to Contractors under the
- 29 without-Restoration scenario, and then again under the with-Restoration scenario. The
- 30 delivery reductions to Contractors equates to the difference between the two scenarios of
- 31 water captured and made available to Contractors.
- 32 The model uses actual data (D) for beginning reservoir storage, inflow, and
- 33 recommended Restoration releases. All other inputs are assumed (A) or calculated (C).
- 34 The same assumptions are made under the "with" and "without" scenarios except that the
- 35 with-Restoration scenario includes Restoration flows. Calculations are done on a daily
- time step and all values are in acre-feet unless noted.

37 WITHOUT RESTORATION

- 38 Item 1: Millerton Lake Inflow (D). This is actual daily data for inflow into Millerton
- 39 Lake as recorded and published by Reclamation
- 40 (http://www.usbr.gov/mp/cvo/reports.html). The beginning storage for March 1 of each
- 41 year is also used in the model and found on this website.
- 42 Item 2: Riparian releases (A). For purposes of this model, the Friant Dam releases to
- 43 meet Gravelly Ford requirements will be assumed to be those amounts noted in Exhibit B

- 1 of the Stipulation of Settlement totaling 116,741 AF annually. The daily flow rates are
- 2 also as noted in Exhibit B for various time periods. It is noted that the critical-low and
- 3 critical-high years use 116,662 AF in Exhibit B rather than 116,741 AF but this WUC
- 4 model is not applicable in the driest years.
- 5 Item 3: Net Inflow without Restoration (C). Item 1 minus Item 2. This is the net
- amount entering the reservoir that could potentially be used or captured for use byContractors.
- 8 Item 4: Water Use (C). Daily and cumulative water use is calculated by taking the
- 9 agreed-to Water Use Curves which are based on total Class 2 contract amounts of
- 10 1,401,475 AF and applying monthly percentages of March 7%, April 12%, May 16%,
- 11 June 20%, and July 20%. Subsequently, potential use for this period totals 1,051,106 AF.
- 12 Note that in the event Millerton Lake levels approach dead pool (134,054 AF), and water
- 13 rates available for delivery to Contractors are reduced below the water use curve rates.
- 14 The water use curve rates may be increased at a later time, up to full canal capacity of
- 15 5,925 cfs, until the cumulative water use equals that which would otherwise have
- 16 occurred absent such reduction in rates due to dead pool reductions.
- 17 Item 5: Spill Conditions (C). The model tracks daily reservoir storage and in the event
- 18 levels reach 520,528 AF, spill occurs, and the model takes into account going in and out
- 19 of spill mode. Note that the initial spill date occurs when the cumulative net inflow (Item
- 3), (after filling the March 1 available storage (Item 1)), equals the cumulative water use
- 21 (Item 4).
- Item 6: Spill calculation (C). Once the reservoir is full, all inflow in excess of the daily water use curve becomes spill, and is therefore not available to Contractors.
- 24 Item 7: Net Water Available to Contractors (C). Subsequently, the Net Water
- 25 Available to Contractors becomes the Net Inflow (Item 3) minus the Spill Calculation
- 26 (Item 6) and subsequently multiplied by 98.5% to account for the 1.5% of canal losses (as
- a calibration parameter and to reflect the water delivered to the Contractors at the
- turnouts).

29 WITH RESTORATION

- 30 Item 8: Restoration releases (D). Restoration flows for the purposes of RWA are
- 31 calculated as the Restoration Flow Schedule (i.e. Restoration Administrator
- 32 recommendation accepted by Reclamation) at Friant Dam minus the Exhibit B Riparian
- releases. In the event of actual spill operations, including releases to avoid a spill, the
- Restoration flows are those previously recommended by the RA and approved by
- 35 Reclamation for the period of spill operations. The daily data for Restoration releases,
- 36 including those amounts due to buffer flows, as recorded and published by Reclamation
- 37 can be accessed at http://restoresjr.net/program_library/04-RA_Recommends/index.html.
- 38 Item 9: Net Inflow with Restoration (C). Under the with-Restoration scenario the
- 39 Restoration releases can be added to and treated similar to a riparian release.
- 40 Accordingly, the net inflow now becomes the sum of Millerton Lake Inflow minus
- 41 Riparian releases minus Restoration releases (Item 1 Item 2 Item 8).

Item 10: Net Water Available to Contractors with Restoration (C). Once Item 9 is 1

- 2 calculated the model steps through the same steps as outlined in Items 4, 5, 6, and 7 in
- 3 Step 1 thus determining the net water made available to Contractors with Restoration.
- Item 11: Net impacts to Contractors (C). Subsequently, the difference between Item 7 4 and Item 10 is the impact to Contractors due to Restoration. 5
- 6 As an example, if the WUC model indicates that under a Restoration release scenario of
- 7 500,000 AF only 300,000 AF would have been captured, used, and or made available to
- 8 Contractors without Restoration, but under the with-Restoration scenario only 180,000 af
- was likewise made available, the Step 1 calculation of impacts would be the difference of 9
- with-Restoration and without-Restoration scenarios of 120,000 AF. 10
- Item 12: Buffer Flow impacts. Buffer flows that cause reductions to Contractors 11
- (impacts) receive an extra 0.25 AF of impact calculation. To determine the reductions 12
- 13 due to buffer flows, simply modify the Restoration flows (Item 8) by removing the buffer
- flows and rerun the model. With the rerun model, if impacts are less than the modeled 14
- 15 impacts with buffer flows (Item 11), the difference in impacts are those reductions due to
- 16 buffer flows, to which the 0.25 factor is to be applied.
- 17 As an example, if the website indicates 30,000 AF of buffer flows were released and the
- 18 impacts to Contractors (Item 11) totaled 120,000 AF, but rerunning the model without the
- 30,000 AF of buffer flows indicates impacts to Contractors was only 105,000 AF, the 19
- difference of 15,000 AF were reductions due to buffer flows. Subsequently, additional 20
- 21 impacts would be $15,000 \ge 0.25 = 3,750$ AF. The 3,750 AF shall then be added to the
- 22 120,000 AF calculated above for a final net impacts to contractors of 123,750 AF.

Step 2: Determine Friant-wide Impacts using Late-Season Spill Calculations 23 24 (August through February period)

The WUC Model does not simulate daily operations between August 1 and the end of 25 February as the model assumptions associated with Millerton Lake operations are highly 26 27 variable and it is difficult to simulate with and without Restoration operations. Typically, 28 all net inflow into Millerton during this period can be captured and made available to 29 Contractors and subsequently all Restoration flows released would be a reduction in 30 water supplies or considered an impact to Contractors. Spills may occur, however, under 31 anomalous conditions of rainfall and/or early snowmelt, and such a spill event and associated Restoration releases would not count as an impact. It is noted that a spill 32 33 includes water released into the SJR at Friant Dam, spilled over the Friant Dam, or 34 delivered as 215/flood flows, during existing or projected spill conditions. 35 This RWA methodology accounts for these late season spills manually, in real-time, when calculating impacts from Restoration releases during the August-February time 36

period. When releases are being made from Friant Dam in excess of releases to meet the 37

- 38 approved Restoration Schedule during the period of August 1st through the end of
- February, Restoration releases scheduled on those days would not count as a water supply 39
- impact during these times of spill releases. The quantity of water spilled on those days 40
- 41 also will not count as water captured or made available to Contractors. For example, if a
- total of 20,000 AF of water was spilled, that 20,000 AF would not be counted as made 42
- available to Contractors when applying the 2.2 MAF test in Step 4. For purposes of Step 43

- 1 4, the net water available to Contractors with Restoration shall also be calculated (Inflow
- 2 less Riparian less Restoration less spill). During a late season spill the associated impact
- 3 reduction number shall be the assumed Restoration release, as approved by Reclamation,
- 4 *prior* to a spill, for that day.
- 5 As an example, if 108,000 AF were scheduled and released for Restoration during Aug-
- 6 Feb, but spill releases were made on 5 consecutive days, and Restoration flows as
- 7 scheduled by the RA for those 5 days equaled 900 AF/day, then 4,500 AF released for
- 8 Restoration would not count as impacts. Subsequently, the impacts for the Step 2
- 9 calculation for this Aug-Feb period would be reduced to 103,500 af.
- 10 **Buffer Flow impacts.** Buffer flows that cause reductions to Contractors (impacts)
- 11 receive an extra 0.25 AF of impact calculation. Accordingly, the late season spill period
- 12 calculations shall include separate accounting of Restoration and Buffer flow releases. If
- 13 a spill is not occurring the Restoration amount shall be multiplied by 1.00 and the Buffer
- 14 flows amount shall be multiplied by 1.25. If there is a spill event both Restoration flows
- 15 and Buffer flows would not count as impacts.

Step 3: Summation of Friant-wide Impacts (March through February wateryear)

- 18 The results from using the WUC model for March-July (Step 1), and the late season spill
- 19 calculation for August-February (Step 2), shall be added together including contributions
- 20 from Buffer flows to get the potential impacts for the entire Restoration year period of
- 21 March-February.
- As an example, impacts from Step 1 of 123,750 AF added to impacts from Step 2 of
- 103,500 AF results in a total of 227,250 AF of impacts for the Contract Year pursuant to
 Step 3.

25 Step 4: Compare total Friant-wide modeled water made available to Friant-26 wide total contract quantity of 2.2 MAF

- 27 Upon calculation of the total amount of water captured and or made available to
- 28 Contractors for the entire Restoration year as stated above (Step 3), Reclamation will
- compare such amount to the full Friant wide contractual amount of 2.2 MAF and record
- 30 the shortfall or contract deficit. This step is done on a Friant-wide basis.
- As an example, while calculating the impacts in Step 1, 2, and 3, the model results show
- that the Contractors had 2.1 MAF available to them with Restoration. Regardless if
- 33 whether Contractors actually used 2.1 MAF, that value is used to calculate the contract
- deficit for the year. In this case, 2.1 MAF is only 100,000 af short of full contract totals
- of 2.2 MAF so the results from Step 4 is 100,000 af.

36 Step 5: Compare Friant-wide Impacts

- Compare the results from Step 3 to the results of Step 4 and use the lesser of the two
- 38 values.

- 1 As an example, if calculation of a full contract year impacts were 227,250 AF (Step 3),
- 2 and calculations under the 2.2 MAF Test (Step 4) indicated a potential contract deficit of
- 3 only 100,000 AF, the impacts would be the lesser of the two or 100,000 AF.

4 Step 6: Distribution of Friant-wide Impacts to Individual Contractors

5 Upon completion of Step 5, Reclamation would allocate the reduction in supplies to

- 6 individual districts as a proportion of the Class 1 and Class 2 contract totals. Class 1
- 7 contracts would record impacts first until, when adding to the then current year
- 8 declaration, 100% of Class 1 contract totals are met (up to the first 800,000 AF). Class 2
- 9 contracts would then receive the remaining reductions in water deliveries proportional to
- 10 the Class 2 contract totals. Annual water supply allocations are available at the website
- 11 http://www.usbr.gov/mp/cvo/vungvari/water_allocations_historical.pdf.
- 12 As an example, if the Friant declaration is 50% Class 1, the first 400,000 AF (800,000 x
- 13 0.5) of recorded impacts shall be contributed to Class 1 contracts. Impacts greater than
- 14 400,000 AF, if any, would be distributed to Class 2 Contractors (equal ratio based on
- 15 contract amounts). If Friant declaration is 100% Class 1, all recorded impacts shall be
- 16 distributed to Class 2 Contractors.

Step 7: Compare actual water made available to Individual Contractor relative to its contract amount

- 19 Determine the contract deficit on an individual Contractor basis by subtracting the water
- 20 made available to each Contractor from each Contractor's individual contract amount.
- 21 Recorded Friant water made available to a Contractor would include all supplies
- 22 delivered to, or on behalf of a Contractor (includes transfers out and exchanges, etc),
- 23 including, but not limited to, Class 1, Class 2, 215, RWA, floodwater, Warren Act, 16(b),
- and 13(i) supplies, including those supplies requested to be carried over/rescheduled and
- 25 pre-use. Rescheduled and pre-use water is included in the impact calculation as it is water
- 26 made available to the Contractor and the Contractor has determined its best use for that
- 27 Contractor, i.e., to be carried over or pre-used. Water rescheduled and pre-used will only
- be counted for the purposes of impact calculation in the year it is first made available to a
- 29 Contractor, and not when it is delivered or spilled the subsequent year (for carryover).
- 30 Contractors are responsible for reviewing and verifying this information with
- 31 Reclamation.
- 32 Note that the various Friant based supplies other than Class 1 and Class 2 (i.e. 215, Class
- 33 2/215, RWA, etc.) are included in the calculation as delivery of those supplies have the
- 34 potential to artificially raise the calculation of impacts if a Contractor chooses to use
- those supplies in lieu of remaining contract supplies (Class 1/Class 2 supplies). That
- potential only exists until full Class 1/Class 2 supplies are delivered and then they can no
- 37 longer affect the impact calculation.
- 38 As an example, if deliveries/water made available to each Contractor indicates that one
- 39 Contractor had available water of 50,000 AF (for example, 30,000 AF of Class 1, 5,000
- 40 AF of Class 2, 5,000 AF of carried over Class 2, 5,000 AF of 215, and 5,000 AF of
- 41 16(b)), and a full contract total of 135,000 AF, the contract deficit for that district was
- 42 85,000 AF.

1 Step 8: Compare Individual Contractor Impacts

- 2 For each Contractor, the lesser of Step 6 and Step 7 shall apply. If this test reduces a
- 3 Contractor's impacts, that reduction is not reallocated back among other Contractors but
- 4 rather the impact has not occurred.
- 5 As an example, if calculation of individual impacts were 100,000 AF (Step 6), and
- 6 calculations under the Individual contract test (Step 7) indicated a potential contract
- 7 deficit of only 85,000 AF, the impacts would be the lesser of the two or 85,000 AF.

8 Summary of Impact determination by Steps

9 The following is a summary of results from each of the Steps above to determine final 10 impacts to Contractors. For consistency of discussion, the results of the examples given

11 above are used:

12		IMPACTS	STEP/ACTION
13	٠	500,000 af	Released for Restoration
14	•	120,000 af	Step 1: WUC model for Mar-Jul
15	•	123,750 af	Step 1: include buffer flows
16	•	103,500 af	Step 2: Late season spills, Aug-Feb
17	•	0 af	Step 2: include buffer flows
18	•	227,250 af	Step 3: Full year impacts (Friant-wide basis)
19	•	100,000 af	Step 4: 2.2 Test (Friant wide basis)
20	•	100,000 af	Step 5: Lesser of Step 3 and Step 4
21	•	100,000 af	Step 6: Distribute to individual Contractors
22	•	85,000 af	Step 7: Individual contract deficit test
23	•	85,000 af	Step 8: Lessor of Step 6 and Step 7

24 Model Parameters

Fixed model parameters (constants) represent scalar quantities anticipated to remain unchanged in the application of the methodology. Recovered Water Account parameters include:

- Minimum Storage in Millerton (Dead-Pool), $S_{min} = 134,054$ thousand acre-feet
- Maximum Storage in Millerton (Capacity), $S_{max} = 520,528$ thousand acre-feet
- Maximum Canal Delivery, $Q_{max} = 5,925$ cubic feet per second
- Friant-Kern Canal Capacity: 4,650 cubic-feet per second (Rated performance in 2006)

1 2	 Madera Canal Capacity: 1,275 cubic-feet per second (Rated performance in 2006)
3	• Friant Division Total Contract Maximum, TCM = 2,201,475 million acre-feet
4	• Class 1 Contract Maximum = 800,000 acre-feet

• Class 2 Contract Maximum = 1,401,475 acre-feet